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1. Introduction

The industrial organization literature suggests that intra-industry firm turnover and firm-level cap-

ital investment decisions are mostly driven by productivity alongside other deterministic factors

such as age and size. Based on the theoretical foundation by Jovanovic (1982) and Hopenhayn

(1992) and seminal papers of Olley and Pakes (1996, OP henceforth) in industrial organization and

Melitz (2003) in international trade, most empirical studies find evidence that the revenue pro-

ductivity impacts firm investment and exit behavior. In practice, however, firms face substantial

amount of transitory demand shocks in their daily operation. These shocks may come from differ-

ent sources, such as transitory preference shocks or other unexpected changes that affect individual

firm’s demand. The transitory demand shocks may have an impact on firm turnover and invest-

ment decisions, especially when firms face credit constraints and/or when manager/shareholders’

sentiment is affected by these short-term shocks. In this paper, we explore the role played by

the short-term unexpected demand shocks, besides productivity, on firm turnover and investment

decisions.

A major challenge is to separate the transitory demand shocks from productivity, both of which

are usually unobserved in the data. The importance of separating these two factors was initially

highlighted by Klette and Griliches (1996). One solution proposed in the literature is to model the

demand side explicitly whenever the output prices are available, as in Foster et al. (2008), Roberts

et al. (2013) and Pozzi and Schivardi (2016). These intuitive approaches, however, are not feasible

if price data is not observable to the researcher, which is quite common in production datasets.

Economically, the unexpected demand shocks differ from productivity in that it is realized after a

firm has chosen its inputs and output (and thus expected inventory stock) for each period, while

productivity is observed before the inputs and output decisions. Based on this idea, in this paper

we propose a practical way to solve this problem using inventory stock data. The main idea is

that the within-firm deviation of inventory stock over time from the targeted level of inventory

each period contains important information about demand shocks. One advantage of our method,
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compared with the aforementioned price-based approach, is that inventory information is usually

recorded in most production datasets, such as the plant-level data from Columbia, Chilean and

Chinese manufacturing survey. This makes our method widely applicable.

Methodologically, our model is based on the classical works of Olley and Pakes (1996), Levinsohn

and Petrin (2003), and Ackerberg et al. (2015). We extend their work to explicitly allow for

unexpected demand shocks and inventory to play a role in firms’ production, investment and exit

decisions. The roles played by inventory and demand shocks changes the estimation procedure in at

least two aspects. First, inventory affects firms production and investment decisions directly as it is

a source of available output to satisfy the demand. As a result, we add inventory as a state variable

and it affects firms’ dynamic choices. Second, the unexpected demand shocks can affect investment

and exit decisions, in practice, due to reasons such as credit constraints. Hence, investment may

depend on demand shocks as well besides productivity. This generates multiple unobserved variables

in the investment function, and we lose the monotonicity condition which is necessary to control for

productivity using investment (or material) without controlling for inventory and the unobserved

demand shocks. We solve this problem by inferring individual firms’ unexpected demand shocks

from the within-firm variation of inventory over time. Next, we use the recovered demand shocks in

the investment policy function to control for productivity. An additional advantage of our method

is that it provides a way to address the multi-collinearity problem prevailing in these production

models.2 In our model, collinearity concerns are mitigated because both the inventory stock and

demand shocks provide independent variation between firms’ investment decisions and the labor

and material choices.

We estimate our model using a plant-level dataset from Colombia, which has detailed infor-

2As Ackerberg et al. (2015) and Bond and Soderbom (2005) pointed out, there is a multi-collinearity problem

in the Olley and Pakes (1996) first stage estimation, because both the investment and labor choice are functions of

the same variables: capital, productivity and age. To estimate the labor/material coefficient consistently in the first

stage, we need an independent variation between the labor and investment.
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mation on plant-specific inventory stocks.3 Estimation results from three representative industries

(Clothing, Plastic Products, and Knitting Mills) show that both productivity and demand shocks

are important determinants of firm behavior with productivity having a larger dispersion. The

90th-10th percentile productivity difference ranges from 26 to 54 percent in the three industries

after controlling for demand shocks and inventory. The 90th-10th percentile difference for demand

shocks ranges from 20 to 30 percent in these three industries. This implies that the demand shock

accounts for a substantial variation in the consolidated productivity measure used in the literature.

We also find significant heterogeneity in demand shocks for entrants, incumbents, and exiting firms,

while variation in productivity is relatively smaller across these three groups. Continuing incum-

bent firms have both highest productivity and demand shocks across the three groups. Exiting

firms have lowest demand shocks across the three groups, but they do not necessarily have the

lowest productivity shocks. This suggests that unexpected demand shocks and credit constraints

may be a more important driver of firm exit.

We estimate the firms’ exit and investment decisions as implied by the theoretical model. For

all industries, demand shocks have a negative and significant effect on firm exit rate. Increasing

demand shock by one percent reduces exit probability on average by about 0.1-0.2 percentage points

in our preferred specification in the three industries we investigated. In contrast, the impact of

productivity on exit rate is smaller after controlling for demand shocks. A one percent increase

in productivity reduces exit probability on average by 0.06 percentage points in Clothing and 0.13

percentage points in Plastics industry. In the Knitting Mills industry, the effect is negative but

insignificant. This suggests that firm exit is driven more by the short-term demand shocks than

the productivity. A low demand shock can presumably cause financial problems such as liquidity

constraints to force firms out of the market. On this point, our findings are consistent with Foster

et al. (2008). For the investment decision, we find that both demand shocks and productivity

3As the majority of Colombian firms are single-plant firms, we treat each plant as a decision maker and hereafter

we will use the term plant and firm interchangeably unless otherwise explained.
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are positive and significant determinants. However, the productivity effect is much stronger. For

example in the Clothing industry, the investment elasticity with respect to productivity is about

5.3, in contrast to 2.8 for demand shocks. This trend is robust in the other two industries as

well. This suggests that firms’ capital investment is mainly driven by the persistent productivity.

Overall, we conclude that firms are more likely to die accidentally (driven by unexpected shocks),

but they grow in size as planned (driven by persistent productivity).

This paper is related to two other lines of study. First, it is related to a large literature on

the determinants of capital investment. A survey by Chirinko (1993) notes that the vast majority

of literature on determinants of investment finds it to be a function of prices, output levels and

stochastic shocks. The author pointed out, “relatively little work has been done on quantifying the

effect of autonomous shocks on investment”. There have been some studies addressing this gap

since then, most of which use aggregate data. For example, Ghosal and Loungani (1996) finds a

negative relationship between investment and price uncertainty (which could result from demand

shocks and/or productivity shocks) at the industry level. More recently, Bloom et al. (2007) find

that higher uncertainty reduces the responsiveness of investment to demand shocks. Audretsch

and Elston (2002) support the role of demand factors in providing more liquidity in the investment

behavior of German firms. Cooper and Ejarque (2003) study the role of financial frictions in

firm investment behavior using a dynamic optimization model. Our paper provides plant-level

evidence that both the expected productivity and unexpected demand shocks play important roles

in determining firm investment.

Second, this paper relates to the extensive research on determinants of firm turnover, which has

been a long standing field of study. These studies have found market frictions, demand-learning and

market size as important demand-side factors alongside supply-side productivity driving firm exit.

A survey by Tybout (2000) finds that high turnover in manufacturing firms doesn’t necessarily

imply less productive firms are driven away. He notes that market frictions are important in

determining firm turnover in developing economies. Dixit and Chintagunta (2007) find that both

supply and demand factors are responsible for firm exit in the airline industry. However, the authors
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put particular emphasis on the effect of firms’ learning about the market on exit but do not account

for the supply-side productivity. Similarly, Disney et al. (2003) study the role of learning in firm

exit in the U.K. manufacturing industry. Asplund and Nocke (2006) study the role of market size

as determinant of firm exit. More recently, Collard-Wexler (2013) finds that smoothing of demand

fluctuations has a significant impact on firm exit decision using a dynamic oligopoly model. Our

paper adds to this literature by accounting and comparing both supply and demand side shocks in

determining firm exit.

The rest of the paper is organized as follows. Section 2 constructs an econometric model to

separate demand shocks from productivity. Section 3 reports the estimation results and examines

basic features of the recovered demand shocks and productivity. Section 4 analyses the roles of

demand shocks and productivity on firm behavior. Section 5 tests the robustness of our results to

alternative specifications. Finally, we conclude in Section 6.

2. The Econometric Model

We develop a dynamic model of firm production by incorporating unexpected idiosyncratic demand

shocks and inventory stock into the standard framework of Olley and Pakes (1996). The extended

model allows us to recover productivity and unexpected demand shocks at the firm level from

observed inputs, revenue, and inventory data.

2.1. The Model Setup Production and Productivity. The production function is assumed to

be Cobb-Douglas,

(1) Qjt = exp(ω0
jt + εjt)K

βk
jt L

βl
jtM

βm
jt ,

where Qjt,Kjt, Ljt and Mjt represent the output level, capital stock, labor and material stocks

respectively. The parameters βk, βl and βm are the associated factor share parameters. Firm j

has a productivity level of ω0
jt, which is structural. The production is subject to a non-structural
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productivity shock εjt, which is unobserved to firms at the time of production.

Demand. The demand function is of the standard CES type,

QSjt = P ηjt exp(φjt + zjt),(2)

where Pjt and QSjt are the price and demand quantity respectively, φjt is a demand shifter known to

the firm, and zjt is a demand shock that is unexpected to the firm. η is the demand elasticity. We

assume that the i.i.d. demand shocks, zjt, follows a mean zero normal distribution with standard

deviation σ, zjt ∼ N(0, σ2). The mean zero assumption implies that the sales prediction by a

firm is not biased in either positive or negative direction. In other words, no firm consistently

under-predicts or over-predicts its demand.

Timing. Following the tradition, we use lower-case variables to represent the logarithm of

corresponding upper-case variables, unless otherwise specified. We assume that firms observe their

own capital stock (kjt), productivity (ω0
jt) and beginning-of-period inventory stock (invbjt) in the

beginning of a period, and choose labor (ljt), material (mjt) and output prices (Pjt) to produce

output (Qjt) and maximize expected profits without observing the demand shocks. In order to

maximize the long-term profits, the firm’s optimal choice of output and prices may exceed the

expected demand, naturally leading to a targeted level of inventory before the resolution of demand

uncertainty. Alongside inputs, a targeted level of inventory stock (λjt) is determined as well as the

difference between the available output and expected sales. After production, demand shocks (zjt)

and production shock (εjt) are observed which determine the sales and output levels and hence

lead to the realization of end-of-period inventory stock (invejt) and period profits (πjt). Finally,

firms choose whether to exit and their investment (ijt) levels.4 As a result, the unexpected demand

4It is very difficult to find direct evidence on whether demand shocks happen before or after investment decisions

from typically available production datasets, although similar assumptions are commonly used in the production and

inventory literature (Aw et al., 2011; Blanchard, 1983; Kahn, 1992; Maccini and Rossana, 1984; Blinder, 1986). For

the purpose of our paper, the following three reasons suggest that the use of this assumption may be acceptable. First,
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shocks differ from productivity in that it is realized after a firm makes the optimal inputs and

pricing choices for each period, while productivity is persistent and observed before the inputs and

pricing decisions. This timing helps us in disentangling and separately identifying the productivity

and the demand shocks.

The timing assumption that production decisions happen before observing demand shocks cap-

tures the fact that firms usually do not have complete information about the market demand of

their product when production happens (though they may have some expectation). The demand

shock, zjt, represents the uncertainty firm j faces at time t when it determines how much to pro-

duce. The firm’s ex-ante optimal choice of output level may not be ideal after the realization of

demand shocks, in the sense that it may generate too much or too little inventory. Given the

non-negative inventory constraint and prices being fixed before observing demand shocks, this may

generate actual shortages too. As a result, the level of inventory stock will contain information

about the demand shocks, and we can use the variation in inventory levels to help recover the

demand shocks faced by individual firms.

The demand shocks, although i.i.d. drawn, have a dynamic effect on firms’ future production and

profitability through two channels. First, the i.i.d demand shocks, once realized, change firms’ end-

of-year inventory levels, which affects firms’ investment and exit decisions. Second, in practice firms

may face borrowing constraints which usually depend on their available collateral and performance

on the balance sheet, and demand shocks affect both of them. As a result, the demand shocks, like

productivity, can have a dynamic impact on firms’ long-run activities and performance like growth

and turnover.

The introduction of demand shocks and inventory stock into the model has multi-fold implica-

it does not affect our estimate of demand shocks. Second, it also does not affect our key equation to estimate the

production function, because the general function form of Equation (16) is the same no matter whether investment

depends on demand shocks or not. Finally, after estimating the demand shocks and productivity, we find that the

recovered demand shocks do have an impact on investment, which provides indirect evidence on the above timing

assumption. The bottom line is that our model is internally consistent.
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tions. First, it brings in an important dimension of firm heterogeneity which plays a key role in a

firm’s daily operation. Second, the inclusion of demand shocks and inventory stock implies that the

labor and material choices are dynamic. Third, the timing assumption that the demand shocks are

observed before the choice of investment but after labor and material choices provides one possible

way of breaking the multi-collinearity in the first stage of Olley and Pakes (1996) style estimation

as criticized by Ackerberg et al. (2015).

2.2. Inventory and Demand shocks The first step in our estimation procedure is to quantify

demand shocks using inventory data in order to avoid explicitly solving the dynamic model with

multidimensional choices. In each time period, we have the following accounting equation,

(3) Qjt + invbjt = QSjt + invejt,

where Qjt is the output level and QSjt is the quantity sold by firm j in time period t. The above

feasibility equation notes that the sum of production quantity and beginning-of-period inventories

equate to the sum of sales and end-of-period inventory stock.

When firms make their production and pricing decisions, they observe a set of state variables

summarized in the information set I which includes productivity, capital stock, and beginning-

of-year inventory stock. But they do not observe the current year demand shocks, zjt. Given the

demand function, we can decompose the quantity sold into two parts: expected sales when the firm

makes the production and pricing decisions and an unexpected component (demand shocks),

(4) QSjt = E(QSjt|Ijt) exp(zjt)

To proceed further, we need to make an assumption about the firm’s inventory choice behavior. As

discussed in the literature (e.g. Blanchard, 1983; West, 1986; Kahn, 1992; Ramey, 1991; Maccini

and Rossana, 1984; Blinder, 1986, among many others), firms may intentionally overshoot in their

production and maintain an optimal level of inventory stock, for reasons like production smoothing
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and/or stockout avoidance motive, in the presence of demand uncertainty. To capture this idea,

we assume that each firm j at time t targets an inventory stock, λjt, which is a fixed share of the

expected sales E(QSjt|Ijt),
5

(5) λjt = λjE(QSjt|Ijt).

This seems to be a reasonable assumption over the short to medium term. Note that this assump-

tion does allow the targeted inventory level, λjt, to depend on productivity level and other state

variables. A more productive firm would have a higher targeted inventory level as compared to a

less productive firm, because their expected sales is higher due to their endogenous optimal pricing

decisions, everything else being equal. In Appendix 1, we show that the assumption in Equation (5)

is satisfied in a large class of inventory models which predict a fixed stockout rate as their optimal

production and pricing strategy. Some examples include Kahn (1987, 1992). Kahn (1987) derives

the constant stockout rate under a stricter assumption of constant marginal costs. However, it is

straightforward to see that the key prediction of constant stockout probability still remains after a

slight modification, by allowing for more flexible production costs and a constant demand elasticity

as assumed in our paper. This can be seen directly from Equation (27) in Kahn (1987).

From a firm’s perspective, when it is making its production decision, the available output must

equal the expected sales plus the targeted inventory stock. Hence, the optimal production output

of a firm must satisfy the following equation,

(6) Qjt + invbjt = E(QSjt|Ijt) + λjt

5In the inventory literature, the optimal level of inventories are determined by factors like shape of production

function, volatility of demand shocks, size of orders, inventory costs, etc, as discussed by many papers such as Shaw

(1940), Hay (1970) and Darling and Lovell (1965). More recent studies in logistics management are reviewed in

Graves et al. (1993) and Williams and Tokar (2008). Our assumption is a reduced form version of their general

prediction that the inventory level relates to the expected demand conditional on other factors.
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It is also an accounting equation in an ex-ante sense, and it captures firms’ optimal inventory and

production decisions.

Equation (3) to (6), which are based on firms’ optimal decisions as depicted in section 2.1,

suggest a way to recover the demand shocks. More specifically, we can insert Equation (6) into (5)

to solve out the expected sales E(QSjt|Ijt),

E(QSjt|Ijt) =
Qjt + invbjt

1 + λj
.

Inserting this equation in (4) and using (3), we have,

log

(
QSjt

Qjt + invbjt

)
= − log(1 + λj) + zjt.

Under the assumption that the beginning of year inventory has the same price as the sales in that

period, the above equation is equivalent to

log

(
RSjt

Rjt +Rinvbjt

)
= − log(1 + λj) + zjt.(7)

Where RSjt and Rjt are the values of sales and production in year t respectively. Rinvbjt is the

value of the beginning-of-period inventory at time t. This equation links the ratio of a firm’s

sales to the value of total available output to its inventory share, λj , which is firm specific, and a

demand shock zjt, which is transitory. The firm-specific term associated with the firms’ optimal

inventory share, − log(1 +λj), is identified from cross-firm variation of the average ratio of sales to

available output value, RSjt/(Rjt +Rinvbjt). The transitory demand shocks, zjt, is identified by the

within-firm variation of inventory over years.

In terms of empirical estimation, we explicitly model firms’ optimal inventory share, λj , as a

function of firm characteristics. More specifically, we assume that a firm’s optimal inventory share
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is a function of its size, ownership, and location,

(8) λj = f(Xj) = f(sizej , ownerj , locationj).

Replacing λj in (7) by (8) yields,

log

(
RSjt

Rjt +Rinvbjt

)
= f̃(sizej , ownerj , locationj) + zjt,(9)

where the f̃(·) function represents the term − log(1 +λj) with λj replaced by (8). We can estimate

this equation directly by approximating the function f̃(·) by a suitable polynomial and using data

on sales, output value, beginning-of-year inventory value, firm size, ownership, and location.6 The

demand shock is the residual itself, and the optimal inventory share can be recovered from the

regression function. In Section 5, we use an alternative approach, by treating the optimal inventory

strategy as a firm fixed effect, to confirm that the estimation results are robust to the parametric

form assumption of inventory share in Equation (8).

2.3. Zero Inventories When demand shock is sufficiently high, the realized sales will be high

enough for the firm to have zero inventories, as shown in (3). As a result, we face a truncation

problem: inventory is positive when the demand shock is below a critical value, and zero when the

demand shock is above this threshold value. For instance, around 7 percent of the observations

have zero inventories in our data for the clothing industry. This truncation problem leads to two

issues in the estimation of Equation (7) and (9). First, using the OLS will bias the estimate of

the fixed effects term. In Equation (7), the dependent variable equals zero when inventory is zero

(so that QSjt = Qjt + invjt−1) and it is negative when inventory is positive. This problem can be

addressed by using a Tobit model and λj can be estimated consistently.

The second issue is more serious. We need the magnitude of demand shocks to estimate its

6For empirical implementation, we use a third degree polynomial function with interactions.
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prediction power in firm decisions (e.g. investment and exit). After consistently estimating the

target inventory share λj (or the parameters in f̃(·) in the parametric approach), we can recover the

demand shocks directly for observations with positive inventory; in the presence of zero inventory,

however, we are not able to recover the exact magnitude of demand shocks. In the latter case,

we can still develop two useful measures containing relevant information about the magnitude of

demand shocks: the conditional lower bound and conditional expectation of demand shocks.

The conditional lower bound of demand shocks is the magnitude of demand shock which exactly

generates zero inventories, and it is equal to log(1 + λj) from Equation (7). For easy reference, we

define z̃jt as the measure of demand shocks, after replacing the demand shock by the conditional

lower bound when inventory is zero,

z̃jt =


log

(
RS

jt

Rjt+Rinvbjt

)
+ log(1 + λj) when invejt > 0,

log(1 + λj) when invejt = 0.

(10)

Under the normal distribution assumption for demand shocks and that the inventory share,

λj , is consistently estimated, the conditional expectation of demand shocks given zero inventory is

defined as follows,

E(zjt|invejt = 0) =

∫ +∞

log(1+λj)
zjt

φ(zjt)

1− Φ(log(1 + λj))
dzjt =

σ√
2π

exp
(
− log2(1+λj)

2σ2

)
1− Φ(log(1 + λj))

.

We denote ẑjt as the demand shock measure after replacing it by the conditional expectation in

the case of zero inventories,

ẑjt =


log

(
RS

jt

Rjt+Rinvbjt

)
+ log(1 + λj) when invejt > 0,

σ√
2π

1
1−Φ(log(1+λj)) exp

(
− log2(1+λj)

2σ2

)
when invejt = 0.

(11)

This is a simple way to predict the underlying demand shock, which is in the spirit of Heckman
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style correction, given the limited information in a truncated inventory data. Although conditional

expectation is a more common approach in the literature to deal with a truncated distribution, the

conditional lower bound of the demand shocks (z̃jt) is the relevant information for many variables

observed in the data, such as sales, investment, and exit decisions when the firm has zero inventory.

As a result, we will use it to estimate our main results, and the conditional expectation of demand

shocks (ẑjt) instead will be used as a robustness check in the appendix. The relevance of z̃jt in the

production function estimation will be discussed in detail in the next subsection.

2.4. Demand shocks, Inventory, and Production Estimation After constructing the measure of

demand shock, we use a two-stage approach to estimate the firm-level productivity by extending

Olley and Pakes (1996) (OP henceforth) to introduce the impact of demand shocks and inventory.

We recognize that demand shocks affect firm choices, and as a result production estimation, through

the appearance of inventory stock and potential financial constraints.

As in many studies, we do not have output price data. To address the heterogeneous output price

problem, we follow Griliches and Mairesse (1995) to utilize the demand structure and estimate the

production function based on sales revenue. The extension in our paper is that, after acknowledging

demand shocks and inventory in the model, output value and sales revenue differ and we have to

deal with this difference. Given the demand function and non-negativity of inventory, the sales

revenue of firm j at time t, RSjt, can be written as

(12) lnRSjt =
1 + η

η
lnQSjt −

1

η
φjt −

1

η
z̃jt.

Note that the demand shock is replaced by z̃jt in the above revenue function. The reason is

that when observing zero inventory, invejt = 0, the realized sales quantity Qsjt = invbjt + Qjt =

E(QSjt|Ijt) exp(log(1 +λj)) ≤ E(QSjt|Ijt) exp(zjt), where log(1 +λj) is the cutoff demand shock at

which the firm can just sell out all available outputs at the optimal prices chosen before observing

the demand shocks. Given this condition and the definition of revenue function, we can derive
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Equation (12). Under the previously stated assumption that the sales and inventory have the

same prices, we can establish the relationship between the quantity sold, QSjt, and the production

quantity, Qjt,

(13) Qjt = (1 + xjt)Q
S
jt,

where xjt represents the ratio of change of inventory value relative to sales revenue, xjt ≡
Rinvejt−Rinvbjt

RS
jt

.

It adjusts the difference between the output quantity and sales quantity in the same year caused

by the existence of inventory. Plugging Equation (13) and (1) into (12) yields,

(14) lnRSjt = β∗l ljt + β∗mmjt + β∗kkjt −
1 + η

η
ln(1 + xjt)−

1

η
z̃jt + ωjt + ε∗jt,

where β∗l ≡
1+η
η βl, β

∗
m ≡

1+η
η βl, and β∗k ≡

1+η
η βk. ljt, mjt, and kjt are the logarithm of corre-

sponding inputs. ωjt ≡ 1+η
η ω0

jt− 1
ηφjt is the revenue productivity which includes both the structural

physical productivity and the demand shifter observed by firms. The i.i.d shock ε∗jt ≡
1+η
η εjt. Com-

paring with the standard approach in OP and all other related works, the new terms in Equation

(14), xjt and z̃jt, capture the impact of demand shocks and inventory. There are two sources of

endogeneity problem in the above estimation equation. The first is due to the correlation between

the unobserved productivity ωjt and input choices which is commonly emphasized in the literature.

The second, which is new in our paper, arises from the correlation between demand shocks z̃jt and

the ratio of inventory change to sales revenue, xjt. As we have fully recovered the adjusted demand

shock z̃jt, we can use it to directly solve the second endogeneity problem caused by the correla-

tion between xjt and z̃jt. We solve the first endogeneity problem using control function approach

following OP, using investment as a proxy of productivity.

Following OP, Doraszelski and Jaumandreu (2013), and Aw et al. (2011), the revenue produc-
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tivity is assumed to follow a first order Markov process,

(15) ωjt = g(ωjt−1) + ξjt,

where ξjt is the current period innovation in the productivity. We assume that ξjt is i.i.d. across

firms and over time. Given the timing, firm investment, ijt, depends on all state variables including

productivity, capital stock, end-of-year inventory, and demand shocks. So we can control for the

unobserved productivity by ωjt = ωt(ijt, kjt, z̃jt, Rinv
e
jt). Given our assumption, the relevant mea-

sure to determine investment (and exit) decision is the adjusted demand shocks z̃jt, instead of the

true demand shocks.7 We also use the alternative demand shock measure ẑjt with the Heckman

style correction as a robustness check in Section 5, and the results are similar both qualitatively and

quantitatively. To control for productivity, the underlying assumption in the inversion of the policy

function is the monotonicity between investment and productivity, conditional on other state vari-

ables. Our approach also differs from OP in that we control for the demand shock and its resulting

inventory stock when recovering the unobserved productivity. We derive the first stage estimation

equation by replacing the productivity control function into Equation (14).

lnRSjt = β∗l ljt + β∗mmjt + β∗kkjt −
1 + η

η
ln(1 + xjt)−

1

η
z̃jt + ωt(ijt, kjt, z̃jt, Rinv

e
jt) + ε∗jt,

= β∗l ljt + β∗mmjt −
1 + η

η
ln(1 + xjt) + ϕt(ijt, kjt, z̃jt, Rinv

e
jt) + ε∗jt.(16)

If we assume labor and material to be static as is the case in OP, βl and βm can be estimated con-

7Investment is a function of the adjusted demand shocks, z̃jt, with conditional lower bound demand shocks for

observations with zero inventory. As discussed in Section 2.1, the unexpected demand shocks have a dynamic impact

by affecting inventory and by affecting cash flow of credit constrained firms. The inventory is directly controlled in

the investment function. For the credit constraint channel, when the demand shock is very good and the firm sells

out all available output (zero inventory), it is the cutoff demand shock that is relevant to measuring the cash flow to

the firm. As the demand shock is iid over time, the magnitude of the actual demand shock does not matter in the

case of zero inventory.
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sistently in the first stage. However, after introducing inventory, labor and material are dynamic

variables due to the introduction of savings in our model. Ackerberg et al. (2015) argue that the

first stage of OP suffers from multi-collinearity problems in this case since there is no independent

variation between labor/material and investment. This collinearity problem becomes even more

severe in Levinsohn and Petrin (2003), which uses intermediate inputs instead of investment to re-

cover the unobserved productivity in the first stage. The i.i.d. demand shock affects the investment

but not the labor and material choices due to its timing, and as a result overcomes the collinearity

problem by providing an independent variation between labor/material and ϕ(ijt, kjt, z̃jt, Rinv
e
jt).

8

This independent variation gives us identification for βl and βm even when labor and material

choices have dynamic implications. Following a similar way of the first stage estimation in OP, we

can derive

ϕ̂jt = ln R̂Sjt +
1 + η

η
ln(1 + xjt)− β̂∗l ljt − β̂∗mmjt.

wjt = ϕ̂jt − β∗kkjt +
1

η
z̃jt,

where ln R̂Sjt is the fitted value of lnRSjt in Equation (16). In order to estimate the capital coefficient,

β∗k, we use the Markov assumption on productivity evolution process in the second stage,

ϕ̂jt = β∗kkjt −
1

η
ẑjt + g(ϕ̂jt−1 − β∗kkjt−1 +

1

η
z̃jt−1) + ξjt

The last equation forms the basis of the second stage estimation and the capital coefficient, β∗k, is

consistently estimated from it. Subsequently, the productivity measure can be constructed by

(17) wjt = ϕ̂jt − β̂∗kkjt +
1

η
z̃jt.

8Ackerberg et al. (2015) also suggested using a new timing to identify the model, or to estimate the labor coefficient

together with all other coefficients in the second stage to avoid the collinearity problem.
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3. Estimation Results

This section discusses data and the estimation of productivity and demand shocks.

3.1. Data and Summary Statistics The data used in this paper is from the Colombian manufactur-

ing census from 1977 to 1991, which was collected by the Departamento Administrativo Nacional de

Estadistica (DANE). It contains detailed information about plants’ domestic and imported inputs

usage, output, and many other plant characteristics. We estimate the model for three industries:

Clothing, Plastics and Knitting Mills. We choose these three varied industries since they are impor-

tant ones for the economy, have significant inventory shares (greater than 10%) and have sufficient

observations (more than 2,000). For a detailed introduction to the data, please refer to Roberts

and Tybout (1996).

Table 1 shows the summary statistics for each of the three industries. Inventory share is

calculated as the ratio of the end-of-year inventory value to sales at the firm level. There are four

points to note here. First, inventory accounts for a large share in firms’ sales. The industry average

inventory-to-sales ratio ranges from 10 to 14 percent in the three industries. Second, given an

industry, the variation of inventory share across firms is substantial. The standard deviation is

more than 1.5 times that of the mean for the inventory share across industries. Figure 1 and Figure

2 show variation in inventory stocks over time for small and large firms in the Clothing industry.

Third, within firm variation contributes substantially to the observed variation of inventory in the

data. It explains the total variation of inventory-to-expected sales ratio by 48 percent, 27 percent,

and 23 percent in Clothing, Plastics and Knitting Mills, respectively. In Figure 3, we plot the

histogram of the within-firm variation of inventory-to-sales ratio for each of the three industries.9

This variation across firms and time in an industry suggests that the demand shock can have a

significant dispersion as well. Fourth, inventories reported are point sampled at the end of the year.

9The within-firm variation of inventory-to-sales ratio is defined as the observed inventory-to-sales ratio normalized

by the mean for the same firm.
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This data limitation would be problematic for industries that produce perishable goods such as food

products, since they cannot be stored for a longer term and an end-of-year inventory level may not

correctly reflect firm decisions. Hence, we choose industries whose products have a sufficiently long

shelf-life. The summary statistics for age, exit rate, capital investment, labor expenditure, capital

stock, material expenditure, and sales are also reported in Table 1.

3.2. Production Function and Productivity Evolution The estimation results for output elasticity

for each input and productivity evolution process are reported in Table 2. Capital output elasticity

is around 0.1 for both Plastic Products and Knitting Mills, while it is 0.12 for the Clothing industry.

Labor output elasticity is highest in Clothing industry at 0.33 and ranges from 0.26 to 0.29 in the

other two industries. Material output elasticity is highest in Knitting Mills at 0.59 and lowest in

Clothing at 0.39.10 Productivity evolution is fairly persistent in all three industries (0.73-0.78). In

general, all three industries operate at a scale slightly smaller than the constant returns to scale

(0.84-0.96).

3.3. Productivity and Demand shocks A key output from production function estimation is the

implied productivity distribution of firms within an industry. Given the parameter estimates, the

productivity can be recovered from Equation (17). Their summary statistics are reported in Table

3. It is shown that there is substantial amount of dispersion for productivity (in logarithm) among

firms within each industry. The inter-quartile range is 0.26 in the Clothing industry, implying that

the 75th percentile firm is roughly 31 percent more productive than the 25th percentile firm. This

number is slightly lower in the other two industries, with 0.13 in plastics and 0.15 in Knitting Mills.

The interdecile range is 0.54 in the clothing industry, implying that the productivity for the 90th

percentile firm is about 72 percent higher than that for the 10th percentile firm. This interdecile

ranges are 0.26 and 0.30 for the other two industries, implying that the 90th percentile firm is 30

percent and 35 percent more productive than the 10th percentile firm in these two industries.

10Note that output elasticities are same as the Cobb-Douglas shares since the model is logged.
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A second key output of our estimation is the distribution of demand shock within an industry.

Given the parameter estimates, a measure for demand shock, z̃jt, can be calculated from Equation

(10). Note that when inventory equals zero, we are not able to recover the true magnitude of the

demand shock and it is replaced by its conditional lower bound which is the driver of the realized

sales volume. The spread of demand shocks is also substantial within an industry, suggesting that

ignoring demand shocks will cause significant mis-measurement in productivity. The inter-quartile

range is between 0.08 and 0.13 for the three industries, and the interdecile range is between 0.20

in the Plastics industry and 0.30 in the Clothing industry. Both of these facts suggest a significant

heterogeneity in demand shocks across firms and time, but the dispersion is lower than that for

productivity.

Table 4 compares the average productivity and demand shocks across entrants, incumbents and

exiting firms.11 In all cases, incumbents have a higher mean of demand shocks and productivity

distribution than that of entrants and exiting firms. This can possibly be due to a selection effect:

more productive firms with favorable demand shocks tend to survive with an overall higher mean

than the exiting firm. Although the mean values across the three groups may not be statistically

different from each other point wise, it does provide preliminary evidence that the distribution of

demand shocks and productivity across the three groups may differ, with exiting firms have the

lowest distribution.

Table 5 further reports the correlation coefficients between the two recovered measures, produc-

tivity and demand shocks, and firms’ input and output indicators. It is shown that productivity

is positively correlated with firms’ input choices and sales. The correlation is especially high for

sales, labor and material choices. The correlation between capital and productivity is weaker as it

is a second-order relationship tied together by the investment decision. In contrast, the correlation

11Note we use the demand shock measure z̃jt to generate Table 3, 4, and 5, in which the demand shock is replaced

by its conditional lower bound for observations with zero end-of-year inventory. In Table A2, A3, and A4 in the

Online Appendix, we report corresponding summary statistics for demand shocks using ẑjt, in which the demand

shock is replaced by its conditional expectation in the case of zero end-of-year inventory.
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between demand shocks and input choices are close to zero, as assumed in the model. However, the

correlation of demand shocks with sales is positive around 0.11-0.13 in all three industries, because

demand shocks partly contribute to sales directly. A negligible correlation between demand shock

and productivity suggests that separate economic forces are driving these two shocks and hence

provides additional support to the assumptions made for dis-entangling them.

3.4. Inventory Share We also recover firms’ inventory share relative to the expected sales, λj ,

while recovering demand shocks. The estimates are reported in Table 6. On average, the estimated

inventory-to-expected sales ratio is about 11 percent for the clothing and knitting mills, while a

standard deviation of 0.03 and 0.05 shows a reasonable amount of dispersion across firms within one

industry. The estimated inventory to expected-sales ratio is about 7.8 percent for plastic products,

with a standard deviation of 0.03. These estimates are in the reasonable range as compared to the

ratio of the inventory value and sales observed in the data.

4. Productivity, Demand Shocks, and Firm Behaviour

In this section, we use our estimation results to explore the connection between firm heterogene-

ity (productivity and demand shocks) and firm behavior dynamics (exit and capital investment

decisions). The major purpose behind this exercise is to determine the relative importance of

technology versus unexpected demand factors in driving firm investment and exit decisions.

4.1. What Drives Firms to Exit? An important application of the productivity measures in the

existing literature is to understand the firm turnover in operation. Table 1 shows the average exit

rate of firms in each industry. The exit rate is defined as the ratio of firms that stopped operating

to the total incumbents in each year. For example, in the clothing industry 14 percent firms exit at

the end of each year, on average. Firm exit rate in the other two industries is of similar magnitude,

suggesting that it is a common feature in these industries.

The timing in our model implies that firms’ decision to exit depends on productivity, demand
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shocks, capital size, and end-of-period inventory stock. As a result, we estimate a Probit model of

firms’ exit decisions based on the following equation

(18) EXITjt = x(ωjt, z̃jt, kjt, Rinv
e
jt, Xjt) + ξejt,

where the dependent variable EXITjt equals 1 if a firm exits during year t, and 0 otherwise. Xjt

are other control variables such as firm age, and ξejt is an i.i.d. shock to a firm’s exit decision, which

is assumed to be uncorrelated with a firm’s state variables. We also control for year fixed effects in

all specifications.

We report the detailed regression results in table 7. The first two columns report results from

isolated regressions. We find that both a higher demand shock as well as a higher productivity

reduces the probability of exit in all three industries. In column (3), both productivity and demand

shocks are included to separate out the role played by each. In column (4), we control for firm

size (capital stock). Again, we find similar effect of demand shock on firm exit: a good demand

shock significantly reduces the probability of exit. In contrast, although the effect of productivity

on exit is significant in clothing and plastics industry, it becomes insignificant in the knitting mills

industry. Also, the coefficient on productivity drops when we control for size in column (4). This

suggests that productivity was capturing a size effect in specifications (1) and (3). This happens

since larger firms are less likely to exit even after accounting for the shocks, which is consistent

with the findings in OP, Dunne et al. (1988) and Dunne et al. (1989).

In our preferred full regression in column 5, we further control for end-of-period inventory

stock as implied by the timing of the model. After controlling for demand shocks, inventories can

influence the firm exit through two channels. First, a large inventory stock implies a size effect

making a large firm less likely to exit. Second, a large inventory stock can act as a collateral for

borrowing money from bank making it less likely to quit. Because both channels point to the same

direction, after controlling for demand shocks, we observe a negative sign on the inventory stock.

We find that the effect of demand shock remains statistically significant and increases in magnitude
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for all three industries. We report the average marginal effect corresponding to the full regression

in in the last column of Table 7. Overall, an increase of demand shocks by one percent reduces the

probability of firm exit on average by 0.1-0.2 percentage point as reported the last column. The

marginal effect of productivity on firms’ exit decisions remains insignificant in the knitting mills

industry, although it is also negative (-0.04).

Overall, our empirical finding has an important implication: a firm’s exit may not be mainly

driven by its persistent productivity; instead, a firm is more likely to be forced out due to a transitory

demand shock. It implies that the firm turnover analysis based on productivity alone (excluding

demand shocks) conducted in the literature can be misleading for certain industries—especially in

industries with a volatile demand. Hence, to forecast a firm’s exit decision more reliably, we want

to stress the need to consider the role of transitory demand shocks.

4.2. What Drives Firms to Invest More? Productivity measures are often used to understand

firm growth, via capital investment for example. In this subsection, we test the roles played by

productivity and demand shocks in determining firms’ growth. The timing of our model implies

that firms’ capital investment decision is a function of its productivity, demand shock, capital size,

and end-of-period inventory stock. Accordingly, we estimate a model of firms’ investment decisions

based on the following equation

(19) ijt = i(ωjt, z̃jt, kjt, Rinv
e
jt, Xjt) + ξijt,

where ξijt is an iid shock independent of a firm’s state variables. We use TOBIT as our preferred

model because investment is usually lumpy with a substantial amount of zeros in the data.12

In the first two columns of Tables 8, we estimate the stand-alone effect of productivity and

demand shocks on investment levels. It turns out that both productivity and demand shocks

have a positive and significant impact on investment. Column 3 measures the joint effect of both

12As a robustness check, we also estimate the investment decision using OLS and find similar results.
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shocks and we find that the coefficient on demand shock becomes insignificant in the presence of

productivity for clothing and knitting mills. Column 4 measures a positive effect of both stochastic

factors after controlling for capital stock. Similar to the exit regression, we see a large drop in the

productivity coefficient once we control for size. This indicates that larger firms are more productive

and tend to invest more, which is expected. Column 5 of Table 8 reports the estimation results from

the full model as captured in Equation (19). Again, both productivity and demand shocks in all

three industries have a positive and significant impact on investment. The coefficient on inventory

captures two opposing effects. First, a positive size effect, large inventory stock implies a large firm

and hence it may invest more. Second, if a firm has more finished goods in the warehouse, then

less goods are needed next period which may have a negative impact on today’s investment. These

two effects cause the inventory coefficient to have both positive and negative signs in our results.

The estimation results show that the effect of one percent increase in productivity on investment

(5 to 10 percent) is higher than that of the demand shocks (1 to 3 percent) in all three industries.

This implies that in general, the persistent productivity is a more important factor affecting firms’

investment decisions, compared with the short-term demand shocks. Since the coefficient on de-

mand shocks is always significant, it supports our hypothesis that cash-flow is also an important

determinant of investment and hence firm-size growth.

5. Robustness and Discussion

1. Heckman Style Correction. In our main results, we argue that the demand shock measure

adjusted by the conditional lower bound for observations with zero inventory (z̃jt), contains the

relevant information in influencing firms’ investment and exit decisions. We made this assump-

tion based on the premise that only the conditional lower bound of the iid unexpected demand

shocks have an impact on firm investment and turnover by changing firm inventory, cash-flow and

financial constraints in the zero inventory case. This assumption also affects the production func-

tion estimation because we use investment to proxy productivity. However, it might be possible
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that the demand shocks may affect a firm’s decision via other channels, e.g. by affecting man-

ager/shareholder’s sentiment/morale. In this case, the actual magnitude of demand shocks may

matter when the inventory is zero.

We test the robustness of our results using the alternative measure of demand shocks ẑjt, with

the demand shocks for zero inventory cases replaced by its conditional expectation, when controlling

for productivity using investment. Because we could not recover the exact magnitude of demand

shocks in the case of zero inventory, this Heckman-style correction is the best we could do given

the data limitation. The estimation results, as reported in the Online Appendix, are very similar

to our main results.

2. Intercept Method. In our main results, we assume that firms’ inventory share is a

parametric function of firm characteristics including firm size, ownership, and location, as specified

in Equation (8). We test the robustness of our results here by employing an alternative approach to

estimate the inventory share and demand shocks. Instead of adding any parametric assumptions on

firms’ inventory share, we estimate Equation (7) by treating the inventory share as a firm-specific

fixed effect. The obvious advantage of this method is that we leave the firm-level inventory share,

λj , completely flexible and guided by data only. The limitation of this approach, however, is that

it requires a long panel data to estimate the firm effect with credibility. The panel data has 15

periods, which is arguably long enough to estimate Equation (7) with firm dummies. However,

the panel is unbalanced with a much shorter tenure on average for each firm. In practice, we keep

firms which are present for 6 years or more in the data in order to ensure a consistent estimation

of the fixed effect. This leaves us a smaller subsample for each industry, with 6,191 observations

for Clothing, 1,992 for Plastic Products, and 1,316 for Knitting Mills industry. After estimating

demand shocks using Equation (7), we also estimate the productivity using the method outlined

in Section 2.4. The detailed estimation results are reported in the Online Appendix, and they are

consistent with our main results.

3. Role of Firm Size and a Series of Bad Demand Shocks on Firm Exit. We conduct

further analysis to gain more insight on the impact of demand shocks on firm exit. Specifically, we
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explore two directions. First, we study whether the effect of demand shock on firm exit changes

with firm size. Second, we study the effect of a series of unfavorable demand shocks on firm exit.

We further explore the second direction by testing whether the effect of a series of unfavorable

demand shocks on firm exit changes with firm size.

To explore the first point, we add an additional interaction term, z̃jt × Dlarge, in Equation

(18). The dummy variable Dlarge equals 1 if its capital stock is above the industry median,

and 0 otherwise. The results are reported in column (1) for each industry in Table 9 and 10,

with the coefficients in Table 9 and the corresponding marginal effect in Table10. The coefficients

on productivity, demand shocks, and inventory are very similar to our main results in Table 7.

However, the coefficients on the new term, z̃jt×Dlarge, is insignificant, implying that the demand

shocks may not have a differential effects on small and larger firms. This is reasonable considering

that the demand shock z̃jt is a fractional deviation to expected sales by its definition, and hence

already captures some size effect.

We run three additional regressions to examine the second point. In column (2) of Table 9

and 10, we added the lagged demand shocks in addition to current demand shocks to test whether

demand shocks also have a delayed impact on firm exit. In general, we find no significant delayed

effect, except in the Clothing industry. In columns (3) and (4), we test whether a series of bad

demand shocks in prior years drives firms to exit. For this analysis, we define a new variable,

#Badz, as the number of unfavorable (negative) demand shocks a firm has suffered in the past

three years, excluding the current period. We find that consecutive unfavorable demand shocks

cause a significant impact on firm exit, as captured by the large significant coefficient of #Badz

in all three industries. One additional negative demand shock in the past three years increases

the probability of exit by 3.1-3.4 percentage points (or 22-24 percent given that the average exit

probability is about 14 percent) for the three industries, keeping everything else same. This result

provides further supporting evidence to our main results: if financial problems due to unfavorable

demand shocks drive firms to exit, then multiple such unexpected shocks make firms exit even more

likely. However, we find no differential response of large firms to a series of unfavorable demand

25



Kumar and Zhang Demand Shocks and Firm Decisions

shocks as compared with small firms, as captured by the insignificant coefficients of the interaction

term #Badz ×Dlarge in all three industries.

4. Discussion: Price Response to Demand Shocks. In our model, we assume that

output prices are chosen and committed along with the inputs and production decisions in each

period, before observing demand shocks. This assumption is commonly made in the inventory

literature, but it is indeed restrictive to the model especially when using yearly data. If firms can

further adjust prices after observing the unexpected demand shocks, we may bias the estimates

of demand shocks, as pointed out by one anonymous referee. When the demand shock is good,

the firm raises prices, sells less than the case without price response, and has a higher end-of-year

inventory. Because we estimate the demand shock by the difference between the realized inventory

stock and the targeted inventory, we tend to underestimate the demand shocks in this case of a

favorable demand shock. In contrast, when the demand shock is bad, the firm lowers the prices to

sell more, resulting in higher inventory than the case without price response. So, we overestimate

the demand shocks in this case. Overall, if firms respond to demand shocks by adjusting prices,

our measure of demand shocks is biased towards zero. Hence, we may underestimate the dispersion

of demand shocks and the role it plays in determining investment and firm dynamics. Hence, we

could interpret our analysis to be using only a lower bound of demand shocks. As a result, the role

played by the demand shocks may be even larger than predicted using our conservative estimate.

6. Conclusion

We examine the roles played by productivity and unexpected demand shocks on firms’ exit and

capital investment decisions. We propose an approach to dis-entangle and recover the unexpected

demand shocks from the persistent productivity using the within-firm variation of inventory stocks.

Subsequently, we extend the classical production function estimation approach, in the spirit of

Olley and Pakes (1996), to acknowledge the roles of inventory and demand shocks in production

decisions. This approach is widely applicable because inventory data is readily available in many
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production datasets.

Our empirical results indicate that both productivity and unexpected demand shocks play

important roles in determining firm turnover and investment. This suggests that in explaining

these firm activities we should pay demand shocks necessary attention. In the Colombia data, we

find that the persistent productivity plays a relatively more important role in determining firms’

capital investment, while the unexpected demand shocks are a stronger determinant of firms’ exit

decisions. Hence, firms are more likely to grow as planned, but can die accidentally.

Appendix

A.1. A Model of Optimal Inventory Choice The key assumption to derive Equation (7), (8) and

(9) is that the inventory share is fixed relative to expected sales, as exemplified in Equation (5).

In this appendix, we first show that this assumption holds for a large class of stockout avoidance

inventory models (e.g. Kahn, 1987, 1992)13, which predict a constant stockout probability. We

then discuss the conditions under which a constant stockout probability is the optimal choice

when the firm optimally chooses production and prices in the presence of demand uncertainty and

non-negativity inventory constraint using Kahn (1987) as an example. We also show that our

assumptions in this paper are coherent with constant inventory-to-expected sales ratio (Equation

(5)).

A Model of Optimal Inventory with Constant Stockout Probability

We first show that our key assumption, Equation (5) is coherent with a large class of inventory

models that predict a constant stockout probability. As assumed in our paper, a firm faces uncer-

tainty in demand and a non-negativity inventory constraint. It fully bears the costs of production,

inventory, and stockout. The firm chooses production and output prices to maximize its long-term

profits. An increase in inventory holding raises inventory costs as well as production costs (due to

increasing marginal costs). At the same time, stocking out is bad for the firm, because it leads to

13Refer to Blinder and Maccini (1991) for a review of stockout avoidance inventory models.
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a loss of sales. As a result, many firms try to minimize the inventory but ensure that the stocking

out probability is lower than a tolerable level (Holt et al., 1960). Assume that firm j′s optimal

inventory management always targets a constant tolerance stockout probability, αj , which is fixed

for each firm, but may vary across firms depending on firm history and its characteristics.

Given the accounting equation, λjt +E(Qsjt|Ijt) = invejt +Qsjt, we can derive firm j′s stockout

probability as follows

Pr{invejt ≤ 0} = Pr{λjt + E(Qsjt|Ijt)−Qsjt ≤ 0}

= Pr{log
[
λjt + E(Qsjt|Ijt)

]
≤ logE(Qsjt|Ijt) + zjt}

= 1− Pr{zjt ≤ log
[
λjt + E(Qsjt|Ijt)

]
− logE(Qsjt|Ijt)}

≡ αj .(20)

The last equality holds by definition. Given that the demand shock is iid normal zjt ∼ N(0, σ2),

this equation is equivalent to,

Pr

{
zjt
σ
≤ 1

σ
log

λjt + E(Qsjt|Ijt)

E(Qsjt|Ijt

}
= 1− αj .(21)

Denote t1−αj as the value of the standard normal distribution at cumulative probability 1 − αj .

We have

t1−αj =
1

σ
log

λjt + E(Qsjt|Ijt)

E(Qsjt|Ijt)

exp(σt1−αj ) =
λjt + E(Qsjt|Ijt)

E(Qsjt|Ijt)

λjt = [exp(σt1−αj )− 1]E(Qsjt|Ijt).(22)

Equation (22) shows that the targeted inventory level equals a fixed share of expected sales. The

share is determined by the firm-specific stockout tolerance probability. It is worthy of noting

that the expected sales, E(Qsjt|Ijt) are flexibly modeled. It can depend on firm state including
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productivity, capital stock, and beginning of year inventory.

By defining λj ≡ [exp(σt1−αj )− 1], we derive Equation (5),

λjt = λjE(Qsjt|Ijt).

This simple model shows that the key assumption to recover demand shocks in our paper is con-

sistent with a large class of inventory models which predict constant stockout probability.

Discussion on the Constant Stockout Probability Assumption

Kahn (1987) is a concrete example of inventory model which predicts constant stockout probability.

This paper shows that in the presence of demand shocks and nonnegativity constraint on inventory,

a monopolistic firm’s dynamic optimal production and pricing decisions lead to a constant stockout

probability, when (1) the marginal production cost is constant, and (2) there are costs of holding

inventory and stockout due to delayed/lost sales. Based on this model, Kahn (1987) shows that

the model is consistent with many important features of inventory observed in the data, including

the fact that production has a larger variation than sales which cannot be explained by production

smoothing motive alone.

It is straightforward to see that the key prediction of constant stockout probability still remains

after a slight modification of Kahn (1987), by allowing for more flexible production costs and

constant demand elasticity as assumed in our paper. This can be seen directly from Equation (27)

in Kahn (1987). To save space, we avoid copying all their equations and setup here.
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Figure 1: Variation in inventories over time for small Clothing firms (Capital Stock < mean)

Figure 2: Variation in inventories over time for large Clothing firms (Capital Stock > mean)
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Figure 3: Within firm variation of inventories

Table 1: Summary Statistics1

Industry Obs Age Inv. Inv. Sh. Exit% Invest. Labor Capital Mat. Sales

Clothing 11,030 10.86 11.31 0.14 0.14 7.74 14.16 13.19 14.87 15.60
(8.96) (4.76) (0.24) (0.35) (5.95) (1.11) (1.45) (1.4) (1.16)

Plastics 3,693 12.43 12.22 0.10 0.14 11.01 14.67 14.73 15.77 16.44
(9.45) (4.19) (0.18) (0.34) (5.54) (1.29) (1.78) (1.64) (1.49)

Knitting 2,477 13.32 12.46 0.12 0.14 9.56 14.68 14.15 15.59 16.25
(9.45) (4.09) (0.18) (0.35) (5.97) (1.31) (1.72) (1.55) (1.44)

1 Mean and Standard deviation (in parentheses) are reported for each plant-level variables.
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Table 2: Production Function Parameters

Industry Capital Share Labor Share Material Share Scale Persistence

Clothing 0.123*** 0.328*** 0.390*** 0.841 0.779***
(0.002)1 (0.004) (0.003) (0.007)

Plastics 0.103*** 0.293*** 0.564*** 0.959 0.776***
(0.002) (0.006) (0.005) (0.014)

Knitting 0.090*** 0.259*** 0.590*** 0.939 0.733***
(0.003) (0.008) (0.006) (0.018)

1 Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 3: Demand shocks and Productivity

Productivity Demand Shock

Industry Mean SD P75/P25 P90/P10 Mean SD P75/P25 P90/P10

Clothing 3.562 0.232 0.258 0.543 -0.014 0.145 0.132 0.297
Plastics 1.773 0.113 0.128 0.259 -0.007 0.120 0.082 0.196
Knitting 1.997 0.135 0.153 0.308 -0.006 0.125 0.102 0.250

Table 4: Demand shocks and productivity across groups.

Productivity Demand Shock

Industry Entrants Incumbents Exiters Entrants Incumbents Exiters

Clothing 3.538 3.571 3.551 -0.024 -0.006 -0.036
(0.234) (0.229) (0.243) (0.158) (0.135) (0.167)

Plastics 1.768 1.775 1.770 -0.013 -0.003 -0.013
(0.115) (0.108) (0.128) (0.142) (0.104) (0.137)

Knitting 1.974 2.007 1.986 -0.008 0.0002 -0.034
(0.143) (0.128) (0.145) (0.141) (0.11) (0.154)

1 Mean and Standard deviation (in parentheses) of productivity and demand shocks are re-

ported for each group.

Table 5: Correlation patterns

Productivity Demand Shock

Industry Capital Labor Material Sales Capital Labor Material Sales Prod.

Clothing 0.222 0.611 0.622 0.726 -0.017 0.065 0.014 0.132 0.087
Plastics 0.186 0.549 0.562 0.585 -0.004 0.023 0.104 0.121 0.010
Knitting 0.304 0.657 0.647 0.700 -0.007 0.019 0.072 0.112 0.106
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Table 6: Descriptive statistics of the inventory share

Industry Mean Std. Dev Median P25 P75

Clothing 0.108 0.033 0.116 0.076 0.130
Plastics 0.078 0.028 0.074 0.058 0.093
Knitting 0.106 0.051 0.100 0.068 0.122
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Table 7: Probit Regression for Exit

(1) (2) (3) (4) (5) AME

Clothing

ω -0.477*** -0.498*** -0.370*** -0.323*** -0.056***
(0.085) (0.086) (0.080) (0.092) (0.016)

z -0.644*** -0.641*** -0.703*** -0.829*** -0.143***
(0.112) (0.115) (0.116) (0.130) (0.022)

capital -0.097*** -0.092*** -0.016***
(0.014) (0.014) (0.002)

inventory -0.010** -0.002**
(0.005) (0.001)

Pseudo R2 0.299 0.302 0.306 0.312 0.312
Observations 8,706 8,802 8,706 8,706 8,706

Plastics

ω -0.608** -1.051*** -0.894*** -0.766** -0.125**
(0.305) (0.327) (0.331) (0.346) (0.057)

z -0.381 -0.395* -0.423* -0.556** -0.091**
(0.238) (0.238) (0.239) (0.260) (0.043)

capital -0.117*** -0.109*** -0.018***
(0.019) (0.020) (0.003)

inventory -0.012 -0.002
(0.009) (0.002)

Pseudo R2 0.330 0.327 0.336 0.350 0.351
Observations 2,863 2,869 2,863 2,863 2,863

Knitting

ω -0.580** -0.599* -0.236 -0.210 -0.039
(0.284) (0.312) (0.320) (0.325) (0.061)

z -1.059*** -0.973*** -1.027*** -1.084*** -0.203***
(0.261) (0.265) (0.265) (0.295) (0.055)

capital -0.122*** -0.119*** -0.022***
(0.024) (0.025) (0.005)

inventory -0.005 -0.001
(0.011) (0.002)

Pseudo R2 0.250 0.259 0.259 0.273 0.273
Observations 1,944 1,950 1,944 1,944 1,944

1 Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
2 Year fixed effects are included in each specification.
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Table 8: Tobit Regression for investment

(1) (2) (3) (4) (5)

Clothing

ω 9.790*** 10.840*** 5.487*** 5.292***
(0.373) (0.385) (0.350) (0.364)

z 2.234*** 0.916 2.239*** 2.773***
(0.614) (0.596) (0.521) (0.592)

capital 2.847*** 2.829***
(0.057) (0.057)

inventory 0.036*
(0.019)

Pseudo R2 0.014 0.003 0.016 0.059 0.060
Observations 10,842 11,029 10,842 10,842 10,842

Plastics

ω 16.160*** 15.795*** 9.424*** 9.953***
(1.009) (1.083) (0.887) (0.927)

z 1.999** 2.353*** 1.953*** 1.344*
(0.935) (0.899) (0.718) (0.782)

capital 2.106*** 2.138***
(0.051) (0.054)

inventory -0.049*
(0.025)

Pseudo R2 0.012 0.001 0.013 0.079 0.080
Observations 3,680 3,693 3,680 3,680 3,680

Knitting

ω 17.580*** 20.866*** 10.261*** 10.211***
(1.159) (1.292) (1.106) (1.121)

z 4.049*** 1.388 2.598** 2.729**
(1.313) (1.257) (1.030) (1.140)

capital 2.529*** 2.523***
(0.082) (0.086)

inventory 0.010
(0.037)

Pseudo R2 0.018 0.003 0.021 0.083 0.083
Observations 2,452 2,476 2,452 2,452 2,452

1 Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
2 Year fixed effects are included in each specification.
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