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1. Introduction

In applications of production function estimation, many datasets do not contain a specific account-

ing of intermediate input prices and quantities, but instead only provide information on the total

expenditure on intermediate inputs (i.e., materials). This presents a challenge for consistent es-

timation when input prices are not homogeneous across firms or when different firms have access

to different types of inputs (for example, parts of varying quality). To address this issue, many

previous studies assume a homogenous intermediate input is purchased from a single, perfectly

competitive market. This assumption facilitates the use of input expenditures as a proxy for quan-

tities (e.g., Levinsohn and Petrin, 2003). However, if this assumption does not hold—for example,

if transport costs create price heterogeneity across geography—then the traditional proxy-based

estimator is inconsistent. The logic of the inconsistency is straightforward: firms will respond to

price differences both by substituting across inputs and adjusting their total output, causing an

endogeneity problem that cannot be controlled for using a Hicks-neutral structural error term.

Even in a narrowly defined industry, perfect competition in input markets is not likely to hold, so

the proxy approach is clearly not ideal. Fortunately, observed variation in labor input quantities,

together with labor and materials expenditures, contains useful information on the intermediate

input price variation across firms. By utilizing this variation within a structural model of firms’

profit-maximization decisions, we introduce a method to consistently estimate firms’ production

function in the presence of unobserved intermediate input price heterogeneity.

The omitted price problem for production function estimation was first recognized by Marschak

and Andrews (1944). They proposed the use of expenditures and revenues as proxies for input and

output quantities under the assumption that prices were homogeneous across firms. In practice, the

literature has documented significant dispersions in both input and output prices across firms and

over time (Dunne and Roberts, 1992; Roberts and Supina, 1996, 2000; Beaulieu and Mattey, 1999;

Bils and Klenow, 2004; Ornaghi, 2006; Foster et al., 2008; Kugler and Verhoogen, 2012). Klette

and Griliches (1996) show the consequence of ignoring the output price dispersion is a downward
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bias in the scale estimate of production function.2 The effect of input price dispersion is similar.

Using a unique data set containing both inputs price and quantity data, Ornaghi (2006) documents

input price bias under the Cobb-Douglas production function.

A typical data set for production function estimation contains firm-level revenue, intermediate

(i.e., material) expenditure, total wage expenditure, capital stock, investment, and additional wage

rate/labor quantity. However, quantities and prices for intermediate inputs are often not available.

The basic idea of our approach is to exploit the first order conditions of firms’ profit maximization

to recover the unobserved physical quantities of inputs from their expenditures.3 We then use this

recovered physical quantity of intermediate inputs to consistently estimate the model parameters.

We illustrate our approach using the constant elasticity of substitution (CES) production function

as our leading example. We then briefly discuss how the technique can be applied to more gen-

eral production function specifications and incorporate the possibility that materials expenditure

represents the aggregation of a vector of different intermediate inputs. These extensions are fully

developed in the supplemental material.

Our model allows firms to be heterogenous in two unobserved dimensions: they have different

total factor productivity and face different intermediate inputs prices. We are able to recover the

joint distribution of unobserved heterogeneity and find that both productivity and input prices

are important sources of heterogeneity across firms. Accounting for input price heterogeneity can

give rise to richer explanations of firm policies. For example, if input prices are persistent, firms’

2Klette and Griliches (1996) provide a structural approach for controlling for output price variation, we incorporate

their approach into our model which additionally controls for input price variation. Of course, because we assume

profit maximization, it is important that our model include a demand function so that we can derive the firm’s first

order conditions.

3To be precise, we recover a quality-adjusted index for the physical quantity of materials used by the firm. The

associated materials price also represents a quality-adjusted price. In Section 2.2.2 we extend the model to consider

the case where the firm chooses from several unobserved intermediate input types. Our procedure follows the common

practice of assuming that observed inputs (labor and capital) are homogeneous to production. See Fox and Smeets

(2011) for a study on the role of input heterogeneity in production function estimation.
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exit decisions should be modeled as a cutoff in productivity levels and input prices, implying that

relatively less productive firms may remain in the market when they have access to lower input

prices.

The idea of exploiting the first order conditions of profit maximization has been employed in

many other studies. Assuming homogeneous input prices, Gandhi et al. (2013) use the transformed

first-order conditions of the firm’s profit maximization problem to estimate the elasticity of substitu-

tion and separate the non-structural errors as the first step in their production function estimation

procedure. Doraszelski and Jaumandreu (2013), also assuming labor and materials quantities are

observed, use the first-order conditions of labor and material choices to recover the unobserved

productivity. Together with a Markov assumption on productivity evolution, this identifies the

production function parameters. Katayama et al. (2009) use the first-order conditions for profit

maximization to construct a welfare-based firm performance measure—an alternative to traditional

productivity measures—based on Bertrand-Nash equilibrium. Epple et al. (2010) develop a proce-

dure using the first order condition of the indirect profit function to estimate the housing supply

function. Zhang (2014) uses first order conditions as constraints to directly control for structural

errors to estimate a production function with non-neutral technology shocks in Chinese manufac-

turing industries. De Loecker (2011), De Loecker and Warzynski (2012), and De Loecker et al.

(2012) also use the first order condition of labor choice and/or material choice of profit maximiza-

tion to estimate firm-level markup. The recovered markup is then used to analyze firm performance

in international trade. Santos (2012) uses the first order condition of labor and material choices

to recover demand shocks by adding a timing restriction on the sequence of input choices. Our

work is also related to the earlier production function estimation literature based on factor share

regression (Klein, 1953; Solow, 1957; Walters, 1963), which also uses expenditure data to estimate

production function using first order conditions.4

4A share regression can consistently recover the production parameters when firms are price-takers in output

market and technology shows constant return to scale (but may be biased as Walters (1963) points out). For many

applications, Cobb-Douglas is a good approximation of production function. However, it implies constant expenditure
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Our method is closest to Doraszelski and Jaumandreu (2013) and Gandhi et al. (2013). These

papers also assume that both material and labor choices are static and use the first order conditions

of profit maximization as constraints to identify production parameters. Our method differs from

these papers in both the data requirement and how we back out the unobserved productivity.

Doraszelski and Jaumandreu (2013) use both wage and material prices to directly back out the

unobserved productivity using a timing restriction. Our method, without requiring the observation

of material price (or quantity), uses the relationship between expenditures and quantities of labor

and materials to help back out productivity and the unobserved material quantity (and material

price). Gandhi et al. (2013) show that, when materials quantities are directly observed or input

prices are homogenous, it is possible to use first order conditions to non-parametrically identify the

production function. We rely on a parametric approach, but avoid the need to observe material

quantities directly or assume homogeneity.

We demonstrate our approach by carrying out a Monte Carlo study that compares its per-

formance to the traditional estimator and an “oracle” estimator that observes input prices and

quantities directly. The results show that our approach recovers the true parameters well. In

contrast, the traditional proxy approach causes systematic biases in the parameter estimates. In

particular, the elasticity of substitution is underestimated in the proxy approach. This is an in-

tuitive implication of unobserved input price bias as expenditure variation reflects the combined

impact of price differences and quantity differences. Moreover, the distribution parameters are

also biased. This bias could mislead researchers attempting to make policy recommendations. For

example, in a trade policy setting, this bias could result in erroneous counterfactual estimates of

demand and supply changes of all inputs and outputs due to a proposed change to tariff rates on

imported intermediate inputs.

We apply our approach to a plant-level data set from Colombian manufacturing industries and

share for static inputs, even when firms face different input prices. This is not the case in the micro-level data, which

usually suggests a large dispersion of expenditure shares among firms. Therefore, we think it is more realistic to

recognize the dispersion of expenditure share, especially when the purpose is to consider firm behavior.
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compare our results with those derived using the traditional estimator. The results are consistent

with both our predictions and the results of the Monte Carlo experiments. That is, compared

with our method, the elasticity of substitution from the traditional approach is consistently lower.

Moreover, the distribution parameter estimates of the traditional method differ significantly from

those of our method.

Our results indicate significant input price dispersion in all industries, providing further indica-

tion of the importance of controlling for unobserved price heterogeneity. The recovered distribution

and evolution of intermediate prices are similar to that for studies in which input prices are directly

observed (e.g., Atalay, 2014). We also find a positive correlation between intermediate input prices,

wages, and productivity, also corroborating earlier studies (Kugler and Verhoogen, 2012). Finally,

the distribution of productivity estimated using our approach is even wider than using traditional

approaches, suggesting that there is more productivity dispersion in Colombian manufacturing than

previously thought.

The following section introduces a model with unobserved price heterogeneity and outlines

our procedure to consistently estimate the model parameters. Section 3 presents Monte Carlo

experiments that evaluate the performance of our estimator and confirm the biases in traditional

methods when unobserved price heterogeneity is present. We apply our method to a data set on

Colombian manufacturing in Section 4, and conclude in Section 5.

2. A Model with Unobserved Price Dispersion

In this section, we introduce a model of firms’ decision-making in a standard monopolistically

competitive output market. We use this model to show how the production function parameters

can be identified and estimated without resorting to a proxy for unobserved materials quantities.

Instead of substituting quantities with deflated expenditure, our approach exploits the first order

conditions implied by profit maximization to recover unavailable physical quantities of intermediate

inputs from expenditures and labor input quantity. For ease of exposition, the following section

5



Grieco, Li, and Zhang Input Price Dispersion

presents the model for the CES production function specification with a scalar intermediate input.

Section 2.2 discuses extensions to general parametric forms and a vector of intermediate inputs.

These extensions, as well as an illustration applying our method to the translog production function

specification, are fully developed in the Supplemental Material.

2.1. The CES Production Function with Scalar Input. In this section, we present our approach

for the constant elasticity production function and Dixit-Stiglitz demand.5 It has been commonly

recognized that the CES production function needs to be normalized to give meaningful interpre-

tation of its parameters. A branch of the literature has analyzed the importance and the method

of normalization (de La Grandville, 1989; Klump and de La Grandville, 2000; Klump and Preissler,

2000; de La Grandville and Solow, 2006; Leon-Ledesma et al., 2010). We follow this literature

and normalize the CES production function according to the geometric mean.6 Specifically, in

each period t, a firm j produces a quantity Qjt of a single homogeneous output using labor (Ljt),

intermediate material (Mjt), and capital (Kjt) via the production function. Let the baseline point

for our normalization be the geometric mean of (Qjt, Ljt,Mjt,Kjt), denoted as Z = (Q,L,M,K)

where X = n
√
X1X2 · · ·Xn.7 Then the normalized CES production function can be written as,

(1) Qjt = eωjtF (Ljt,Mjt,Kjt; θ) = eωjtQ

[
αL

(
Ljt

L

)γ
+ αM

(
Mjt

M

)γ
+ αK

(
Kjt

K

)γ] 1
γ

,

5We follow the literature in assuming constant returns to scale in this specification. This assumption can be

relaxed by adding a scale parameter. This does not affect the estimation procedure but the scale parameter and

demand elasticity are not separately identified without additional assumptions. For example, if Markov process of

productivity is assumed, the scale parameter and the demand elasticity can be separately identified. We demonstrate

the use of a Markov timing assumption to aid identification in the Supplemental Material (Online Appendix 2).

6For the detail of this normalization and how we implement it in this paper, see the supplemental material (Online

Appendix 4).

7In principle, any point Z0 = (Q0, L0,M0,K0) (which satisfies normalization conditions in Online Appendix 4)

can be chosen as the baseline point, for example a default choice could be (1, 1, 1, 1).
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where ωjt is a Hicks-neutral productivity shock observed by the firm (but not by researchers). The

parameters to estimate are θ = (γ, αL, αM , αK). The elasticity of substitution (σ) is determined

by γ, where γ = σ−1
σ . The distribution parameters αL, αM , αK are restricted to sum to 1.

The normalization has three advantages for our purposes. First, it scales the level of inputs

according to an industry average, eliminating the effect of units on the parameters. Second, the

geometric mean of labor and capital (L,K) are computable using the observed data, and will be

convenient to use in constructing an additional restriction to identify the distribution parameters.8

Third, this scaling gives the distribution parameters a precise interpretation. Specifically, they are

the marginal return to inputs (in normalized units) for a firm with the geometric mean level of

inputs, productivity, and input prices.

Firms are monopolistically competitive and face an inverse demand function which we assume

is Dixit-Stiglitz,

(2) Pjt = Pt(Qjt; η) = Pt

(
Qjt
Qt

) 1
η

,

where Qt and Pt are industry-level output quantity and price in period t, and η < −1 is the demand

elasticity. We make the following assumptions:

Assumption 1 (Exogenous Input Prices). Firms are price takers in input markets. Suppliers use

linear pricing, but input prices are allowed to be different across firms and over time. Prices have

strictly positive support.

Assumption 2 (Profit Maximization). After observing their productivity draw, ωjt, and firm-

specific input prices, firms optimally choose labor and material inputs to maximize the profit in

each period. The firm’s capital stock for period t is chosen prior to the revelation of ωjt.

8Of course, neither M nor Q is computable using the observed data, since we do not observe Mjt or Qjt for

any firm. This has two implications. First, we will recover materials usage relative to the geometric mean (Mjt/M)

instead of materials directly (Mjt). Second, the absolute level of ωjt absorbs Q, however, since Q is a constant, the

change and dispersion of ωjt over time and across firms are still meaningful.
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Assumption 3 (Data). The researcher observes revenue Rjt, inputs expenditure EMjt = PMjtMjt,

wage rate PLjt, number of workers or number of working hours Ljt, and capital stock Kjt. However,

she does not observe firms’ productivity ωjt, or the prices and quantities of either outputs (i.e., Pjt

and Qjt) or materials inputs (i.e., PMjt and Mjt). All these variables are observed (or chosen) by

the firm.

Assumption 1 is our primary departure from the earlier literature, it weakens the typical as-

sumption that input prices are homogeneous when they are not observed. The assumption that

firms are price takers does not preclude them being offered different prices on the basis of their size

(i.e., capital stock), productivity, or negotiating ability, but does assume that firms do not receive

“quantity discounts,” which would endogenously affect purchasing decisions.

Assumption 2 is common in the literature, it is needed since our approach relies on profit

maximization conditions. One restriction of Assumption 2 is that it assumes labor and materials

are both fully flexible. Some in the literature (e.g., Arellano and Bond, 1991; Ackerberg et al., 2006)

allow adjustment costs in labor, but their methods require an implicit assumption on homogenous

input price for consistency when only input expenditure is available to researchers. In this paper,

we assume that both labor and material inputs are flexibly chosen at the beginning of each period,

as in Levinsohn and Petrin (2003) and Doraszelski and Jaumandreu (2013). In addition, as in Olley

and Pakes (1996), we assume capital is quasi-fixed in the short run. However, in contrast to the

previous literature, labor and material input choices depend on idiosyncratic input prices. This is

an additional source of firm heterogeneity in addition to the well-known Hicks-neutral technology

shifter, ωjt.

Finally, Assumption 3 merely formalizes our assumption that only materials expenditure, rather

than materials prices and quantities are observed. Here we assume that materials is a scalar,

homogeneous input. We will provide a structural interpretation of our estimates in the case where

materials expenditure is an aggregation of expenditure on several different unobserved materials

types in Section 2.2.2.

While, relative to Olley and Pakes (1996), we strengthen some assumptions by requiring profit
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maximization, we are able to relax others. Because we use the first order conditions to recover the

unobserved productivity, ωjt, we will not need to use a “proxy” (such as investment) to recover it.

Indeed, investment will not be used in our procedure at all, so there is no need for an invertability

condition on the investment function. Instead, materials quantities and productivity will be jointly

recovered from the two first order conditions.

Given our assumptions, the firm chooses its own labor and material input quantities to maximize

its period profit after observing capital stock, Kjt, productivity shock, ωjt, and input prices PLjt

and PMjt . The firm’s decision problem is:

max
Ljt,Mjt

Pt(Qjt; η)Qjt − PLjtLjt − PMjtMjt(3)

s.t. Qjt = exp(ωjt)F (Ljt,Mjt,Kjt; θ).

The corresponding first order conditions are,

exp(ωjt)FLjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
= PLjt ,(4)

exp(ωjt)FMjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
= PMjt ,

where FLjt and FMjt are the partial derivatives of F (·)—the CES production function given in

(1)—with respect to labor and material. Given our assumptions on the production and demand

functions, a finite solution to the profit maximization problem (3) exists.9 Dividing the two first

order conditions, multiplying both sides by
Ljt
Mjt

, and rearranging yields,

(5)
FLjtLjt

FMjtMjt
=

αL
αM

(
(Ljt/L)

(Mjt/M)

)γ
=
ELjt
EMjt

where ELjt = PLjtLjt and EMjt = PMjtMjt are expenditures on labor and material and the first

9We provide assumptions for more general forms of the production and demand functions in the supplemental

material (Online Appendix 1).
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equality makes use of our CES specification.

Equation (5) is the key to our approach. It relates the ratio of input quantities to the ratio

of input expenditures, which is observable to the researcher. Given that firms choose their inputs

optimally at an interior solution of profit maximization, (5) is always satisfied at the firm choice of

(Ljt,Mjt). The key question is whether (5) places enough restrictions on the unobserved material

quantity Mjt so that we can uniquely recover it from the observed data, (Ljt,Kjt, EMjt, ELjt), up

to production function parameters. For the CES specification, it is straightforward to see that as

long as γ 6= 0, the unique (normalized) level of materials that solves (5) is,

(6)
Mjt

M
=

(
αL
αM

EMjt

ELjt

) 1
γ Ljt

L
.

Intuitively, variation in the expenditure ratio, coupled with the first order conditions for materials

and labor use, provides information that can be used to separate materials prices and quantities.

The key exception is when γ = 0—the special Cobb-Douglas case of unit elasticity of substituion.

The failure of the method under Cobb-Douglas is instructive: because the elasticity of substitution

is fixed at one, when the relative inputs price ( PLPM ) changes firms always choose labor and material

such that the percentage increase (or decrease) of the labor-material ratio ( LM ) equals the percentage

decrease (or increase) of the relative price ( PLPM ). As a result, the expenditure ratio
ELjt
EMjt

remains

constant ( αLαM ), materials quantity drops out of (5), and we cannot separate the price and quantity

of materials from the information on the expenditure ratio. However, for all other elasticities of

substitution, variation in the expenditure ratio reflects the optimal response to changes in the

price ratio, and can be used together with observed labor inputs to uncover materials quantities

and prices. Fortunately, it is easy to test for the Cobb-Douglas case by checking whether or not

the expenditure ratio does in fact vary in the data. As long as this variation exists, our approach

illustrates how to make use of it to consistently estimate the production function parameters. Next,

to recover the unobserved productivity term, we can substitute (6) into the first order condition

10
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for labor in (4),10

ωjt =
η

1 + η
log

{
1

αL

η

1 + η

Q
1/η
t

Pt

(
Ljt

L

)−γ ELjt
Q

1+η
η

×
[
αL

(
ELjt + EMjt

ELjt

)(
Ljt

L

)γ
+ αK

(
Kjt

K

)γ]− 1
γ
(1+ 1

η
)
}
.

(7)

We now derive the primary estimating equation. Since output quantities are not directly observed,

we follow Klette and Griliches (1996) and use the revenue function to estimate both demand and

production parameters. The revenue equation is,

Rjt = eujtPt (Qjt; η)Qjt.

Where Rjt is the observed revenue of the firm, Qjt is the predicted quantity of physical output

based on observed inputs and the model parameters (θ, η), and ujt is a mean-zero revenue error

term which incorporates measurement error as well as demand and productivity shocks that are

unanticipated by the firm. Taking the logarithm of the revenue function yields,

lnRjt = lnPt (eωjtF (Ljt,Mjt,Kjt; θ); η) + ln [eωjtF (Ljt,Mjt,Kjt; θ)] + ujt.

Given our specification for the production function (1) and demand function (2), we use (6) to

substitute out materials and (7) to substitute out ωjt to derive,11

(8) lnRjt = ln
η

1 + η
+ ln

[
EMjt + ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)]
+ ujt.

It is easy to see that while (8) provides identification of the elasticity of substitution and the slope of

the demand curve, it does not identify the distribution parameters. This is due to the substitution of

10See Appendix A.1 for the derivation of ωjt in the CES case.

11See Appendix A.1 for the complete derivation.
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our structural equation for the unobserved materials inputs. Fortunately, two additional restrictions

allow us to identify the distribution parameters. The first is simply the adding up constraint of the

distribution parameters; the second is implied by profit maximization. To see this, recall that the

following equality holds for every observation,

(9)
αL(Ljt/L)γ

αM (Mjt/M)γ
=

PLjtLjt

PMjtMjt
≡
ELjt
EMjt

.

Taking the geometric mean of (9) across all observations implies,12

αM
αL

=
EM

EL
,

where EM and EL are the geometric mean of EMjt and ELjt respectively. Because expenditures

on materials and labor are observed in the data for all observations, the right hand side of this

restriction can be directly computed. Therefore, the model can be estimated via the following

nonlinear least square estimation with restrictions:

β̂ = argminβ
∑
jt

[
lnRjt − ln

η

1 + η
− ln

{
EMjt + ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)}]2

subject to
αM
αL

=
EM

EL
,(10)

αL + αM + αK = 1,(11)

where β = (η, αL, αM , αK , γ).

To make identification more transparent, the problem can alternatively be cast in a GMM

framework. Write the nonlinear equation (8) as rjt = f(wjt;β) + ujt, where f(wjt;β) is the right

hand side of (8) without ujt. The restrictions (10) and (11) can be viewed as degenerate moment

12Recall that the geometric mean of a ratio is the ratio of geometric means.
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restrictions:

E [h(xjt;β)] ≡

[
EMαL − ELαM

αL + αM + αK − 1

]
= 0.

Stacking these together with the moments from the revenue function, we have a vector of moments,

m(wjt,xjt;β) = [∇βf(wjt;β)(rjt−f(wjt;β));h(xjt;β)] which give us the following GMM problem,

(12) β̂ = argminβ

[
1

n

∑
jt

m(wjt,xjt;β)

]′
W

[
1

n

∑
jt

m(wjt,xjt;β)

]
.

To see that (12) identifies all of the parameters, define the matrix,

Φ(β) = E

[(
∇βf(wjt;β)

)(
∇βf(wjt;β)

)′]
=



E[fηfη] E[fηfαL ] 0 E[fηfαK ] E[fηfγ ]

E[fαLfη] E[fαLfαL ] 0 E[fαLfαK ] E[fαLfγ ]

0 0 0 0 0

E[fαKfη] E[fαKfαL ] 0 E[fαKfαK ] E[fαKfγ ]

E[fγfη] E[fγfαL ] 0 E[fγfαK ] E[fγfγ ]


.

Note that the rank of Φ(β) is 3 since
fαK
fαL

= − αL
αK

is a constant. In particular, the rank of the

sub matrix containing columns 2, 3, and 4 is one. To see how the additional restrictions aid in

identification, define Ψ(β) as,

Ψ(β) = E
[
∇βh(xjt;β)

]
=

0 −αM
α2
L

1
αL

0 0

0 1 1 1 0

 .
It is clear that the rank of the sub matrix containing column 2, 3, and 4 of Φ(β) is two. Thus, the

information matrix for the GMM problem at the true parameter β0, V (β0) = [Φ(β0); Ψ(β0)], has

full column rank. Following Rothenberg (1971), we can conclude that all parameters are locally

identified. Since the specification is just-identified, the GMM implementation with any positive

semi-definite weight matrix is equivalent to the nonlinear least square estimation with constraints.

13
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We show consistency and present the asymptotic distribution of this estimator for the general

parametric case in the supplemental material (Online Appendix 1).

2.2. Extensions.

2.2.1. General Parametric Forms. While we have focused on the CES production function for

concreteness, our approach broadly applies to a large class of parametric production functions. In

this section, we briefly discuss how the technique generalizes to other parametric specifications.

Full details, as well as a separate discussion of implementation for the translog production function

are provided in the supplemental material.

There are two places where the parametric form plays a key role. The first is (5), which we use

to back out the unobserved materials quantity. For the CES case (and the translog case in Online

Appendix 2) we are able to derive a closed form for materials. In general, we need to ensure that

(5) exhibits a unique solution. The supplemental material (Online Appendix 1) offers conditions

which imply the existence of a unique solution for materials.

The second place where we appeal to the CES specification is in the derivation of (10), which

exploits the relationship between the geometric mean and the CES functional form to derive an

additional moment condition based on the geometric mean expenditure ratio in the population.

While this moment restriction is particular to the CES specification, similar population moments

may be available for other functional forms. More generally, timing assumptions may also be used

to provide additional moments. For example, in Online Appendix 2, we show how the additional

assumption that productivity moves according to a Markov process—which is commonly employed

in the production function literature—can provide moment restrictions with which to identify all

the parameters for the translog specification. This second approach can be used with any functional

form to provide identifying moment restrictions (including the CES, if it were necessary).

2.2.2. Multiple Materials Inputs. We have followed the literature in assuming that firms purchase

a single homogeneous intermediate input. Indeed, the ability to treat the recovered firm-specific
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price and quantity choices as quality-adjusted scalars representing a single homogenous input is

critical since our demand specification assumes that outputs are horizontally differentiated.13 In

reality, intermediate input expenditures are an aggregate of a wide variety of different input goods.

Unfortunately, datasets typically contain only the total material expenditure, not information on

the various types used, much less prices and quantities for each. With such limited data, it is

clearly not possible to learn the impact of individual inputs. However, if the effect of inputs on

production can be summarized through a homogeneous materials index function, we show that the

remaining production function parameters can consistently be recovered using only total material

expenditure information.

To be specific, suppose the firm may use up toDM different types of materials. Denote the vector

of material quantities used in production as Mjt = (M1jt,M2jt, . . . ,MDM jt). These input types may

be entirely different input goods (thread versus fabric) or the same input good of different quality

(cotton versus polyester fabric). However, only the total expenditure on all components EMjt =∑DM
d=1 PMdjt

Mdjt, rather than each specific component Mdjt, is known to researchers. Assume inputs

enter into the production function as,

(13) Qjt = eωjtF (Ljt, µ(Mjt),Kjt; θ),

where µ : RDM+ → R+ is a homogeneous index function which summarizes the contribution of all

materials inputs to production.14 As part of the production function, we assume that µ is known

to the firm. The corresponding idiosyncratic material prices for each component is summarized in

price vector PMjt = (PM1jt, PM2jt, . . . , PMDM jt), which is observed by firms but not by researchers.

13We thank an anonymous referee for making this point.

14We assume that firms optimally purchase a positive amount of all goods so (15) holds. To accommodate the

possibility that some firms do not use some inputs, we can allow for a discrete choice between homogeneous production

technologies, e.g., µ(Mjt) = max(µ1(M1
jt), µ

2(M2
jt)) where Mjt = (M1

jt,M
2
jt) and µ1(·) and µ2(·) are homogeneous

functions of the same degree. Then, only the first order conditions with respect to the profit maximizing technology

are relevant. We will use this more general setup in the Monte Carlo experiment in Online Appendix 3.
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The firm’s static optimization problem is now to choose Ljt and the vector Mjt to maximize

the profit given productivity, input prices, and capital stock. The first order conditions for Ljt and

all components of the vector Mjt are:

exp(ωjt)FLjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
= PLjt ,(14)

exp(ωjt)Fµjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
µd(Mjt) = PMdjt , ∀d = 1, 2, . . . , DM(15)

where µd(Mjt) =
∂µ(Mjt)
∂Mdjt

.

Denote the optimal choice of the firm as L∗jt and the vector M∗jt. Thus the total expenditure on

materials, which is observed by the researcher, is E∗Mjt
=
∑DM

d=1 PMdjtM
∗
djt. Define the material price

index as Pµjt =
E∗
Mjt

ψ(M∗
jt)

, where ψ(M∗jt) =
∑DM

d=1M
∗
djtµd(M

∗
jt). Using this price index, the information

in (15) can be summarized into a single equation by multiplying (15) by M∗djt, summing across d,

and dividing it by ψ(M∗jt),

(16) exp(ωjt)Fµjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
= Pµjt .

This equation together with (14) can be viewed as the first order conditions of the firm’s

optimization problem if it faced labor price PLjt and a material price Pµjt for single material input

µ. Our method can now be applied as in the scalar materials input case. We show this formally

in Proposition 3 of the supplemental materials (Online Appendix 3). As we would expect, the

functional form of µ(·) is not identified without more information, but its functional form (indeed,

even its dimension) is not needed to recover the other production parameters, θ.

Although we assume that µ(·) is homogeneous, this still allows a vast set of flexible functional

forms that may incorporate both vertically and horizontally differentiated materials inputs. We

verify the validity of this approach for a complicated functional form of µ(·) through a Monte

Carlo experiment in the supplemental materials (Online Appendix 3). Moreover, the results of

our empirical application in Section 4 can be interpreted either through the traditional lens of a
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homogeneous materials input or the more general assumptions of a vector of unknown inputs with

a homogeneous aggregator assumption.

3. Monte Carlo Experiments

This section presents Monte Carlo experiments that evaluate the performance of our method, and

show how it corrects for input price heterogeneity. We first describe the data generation process,

then estimate the model in three different ways based on assumed data availability.

3.1. Data Generation. Here we briefly describe the data generation process used in the Monte

Carlo; a full description is provided in Appendix A.2. Using the CES specification of the production

function (1) and a Dixit-Siglitz demand system (2), we generate N replications of simulated data

sets, given a set of true parameters of interest (η, σ, αL, αM , and αK). In each replication, there

are J firms in production for T periods. For each firm, we simulate a sequence of productivity ωjt

and input prices (PLjt and PMjt) over time. Given these variables and industrial-level outputs and

prices (Qt and Pt), we derive a sequence of optimal choices of labor and material inputs (Ljt and

Mjt with corresponding input expenditures ELjt , EMjt), the optimal output quantity (Qjt), price

(Pjt) and revenue (Rjt) for firm j in each period t. We allow the firm’s capital stock (Kjt) to evolve

based on an investment rule (investment is denoted as Ijt) that depends on its productivity and

capital stock,

log(Ijt) = ξωjt + (1− ξ) log(Kjt).

Which is compatible with the assumptions of Olley and Pakes (1996) and this paper (although our

approach does not make use of the investment decision).

In this way, we generate a data set of {ωjt,Kjt, Ijt, Ljt,Mjt, ELjt , EMjt , Qjt, Rjt} for each firm

j and period t. All these variables are observable to firms, however, usually only a subset of them

are available to researchers. Table 1 lists the underlying parameters used to generate the data set.
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3.2. Our Method. We first estimate the model with our method. In this case, we assume a

researcher observes {Kjt, Ljt, ELjt , EMjt , Rjt} for each firm and each period. The researcher is not

required to observe firm’s investment, material input quantity, physical outputs quantity or, of

course, productivity. As described in the previous section, we exploit the first order conditions to

recover firm-level material quantities from labor quantities and expenditures. This approach allows

us to estimate the production function while controlling for unobserved price and productivity

dispersion. We will evaluate our method by comparing our estimates with the true parameters, as

well as with those derived from two alternative estimation methods that require additional data.

3.3. Traditional Method with Direct Proxy. For our first point of comparison, we estimate the

model using a direct proxy method that substitutes EMjt for Mjt. The method follows Olley

and Pakes (1996) in using a control function approach to utilize investment data to control for

unobserved productivity. Traditionally, researchers have used deflated expenditure on materials

inputs to proxy for intermediate input quantities when applying this and similar methods (e.g.,

Levinsohn and Petrin, 2003), and we follow that practice here. We will refer to this method as the

“proxy-OP” procedure, although we should emphasize that it is the direct proxy, rather than the

OP procedure, that is introducing the bias. In contrast with our method, the proxy-OP procedure

takes output quantities as observable. Hence there will be no output price bias and any resultant

bias is caused by the substitution of physical material input by its deflated cost.15

Specifically, researchers using this method observe {Kjt, Ljt, ELjt , EMjt , Qjt, Ijt} and estimate

parameters via the (logarithm) production function:

(17) ln

(
Qjt

Q

)
=

1

γ
ln

[
αL

(
Ljt

L

)γ
+ αM

(
EMjt

EM

)γ
+ αK

(
Kjt

K

)γ]
+ ωjt + ujt,

where the error term ujt accounts for the measurement error of output and productivity shocks

15We could easily incorporate a revenue function into this procedure. We do not do so in order to emphasize that

the direct proxy is the cause of the resulting bias.
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that are unanticipated by the firm.

It is well-known that the unobservable firm-level heterogeneity ωjt causes transmission bias.

To control for endogeneity bias, Olley and Pakes (1996) assume that productivity follows a first

order Markov process. Following our data generating process, we are more specific and assume that

productivity follows an AR(1) process,

ωjt+1 = g0 + g1ωjt + εjt+1.

Since the true data generating process is in fact AR(1), this rules out specification error associated

with the productivity evolution process, so that the Monte Carlo focuses on the bias caused by

dispersion in input prices. Within our data generating process, the investment decision is a function

of current capital stock and the unobservable heterogenous productivity and therefore, the OP

method can approximate the productivity by a control function of investment and capital stock:

ωjt = ωt(Ijt,Kjt). Substituting this into (17) yields,16

ln

(
Qjt

Q

)
= φ(Ljt, EMjt ,Kjt, Ijt,Φt) + ujt,

where Φt represents time dummies to capture aggregate investment shifters. This equation can be

estimated non-parametrically. This estimation is consistent since the right-hand-side variables are

all uncorrelated with ujt. We estimate φ using the method of sieves.17 Denote φ̂jt as the fitted

value of φ(Ljt, EMjt ,Kjt, Ijt,Φt). Then productivity can be expressed as,

ωjt = φ̂jt −
1

γ
ln

[
αL

(
Ljt

L

)γ
+ αM

(
EMjt

EM

)γ
+ αK

(
Kjt

K

)γ]
.

16In contrast to the original OP paper, we follow Ackerberg et al. (2006) in recovering the labor and materials

parameter out of the second stage of the OP estimation to avoid collinearity issues in the first stage.

17In practice, we model φ(·) with a cubic function with interactions.
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Substituting ωjt+1 and ωjt into the evolution process of productivity, we obtain,

εjt+1 = ωjt+1 − (g0 + g1ωjt).

Note that εjt+1 is uncorrelated with Kjt+1 and variables up to period t, so we can construct the

set of moment conditions with which we estimate the model’s parameters,

(18) E(εjt+1xjt+1) = 0,

where εjt+1(αL, αM , αK , γ, g0, g1) = ωjt+1− (g0 + g1ωjt), and xjt+1 is a vector of variables that are

uncorrelated with the innovation term in period t+ 1, e.g., Ljt, ELjt , EMjt ,Kjt,Kjt+1.
18

3.4. Oracle-OP Procedure. Finally, we compare our method to a first-best case when input quan-

tities are actually observed. We refer to this as the “oracle-OP” case as it uses the Olley and Pakes

(1996) inversion to recover productivity but uses the actual materials input quantities instead of a

proxy. That is, we observe {Kjt, Ljt,Mjt, ELjt , EMjt , Qjt, Ijt} for each firm and each period. This

enables us to estimate the production function in (17) without using expenditure as a proxy. The

only difference between the oracle case and the previous proxy-OP procedure is that material quan-

tity is not substituted by its proxy, since the true quantity is observable in this case. In comparison

to our method, this method requires that the researcher observes investment, output quantity, and

materials input quantities.

3.5. Results. The results of the Monte Carlo experiments for three different true elasticities of

substitution are presented in Table 2. For each method, the listed parameter represents the median

18In the Monte Carlo experiment, we choose

xjt+1 =

(
ln
(Xjt
X

)
, ln
(Kjt+1

K

)
,

(
ln
(Xjt
X

))2

,

(
ln
(Kjt+1

K

))2
)
,

where X = (Ljt,Kjt, ELjt, EMjt), to serve as instruments.
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estimate of the 1000 Monte Carlo replications with standard errors in parenthesis. The square

brackets contain the root mean squared error of the estimates. Across all parameterizations, our

method recovers the parameters well. In contrast, the elasticity of substitution, σ, and αK are

severely underestimated by proxy-OP. The results for the oracle-OP method confirm that when

input price heterogeneity is observed, the bias is eliminated. Interestingly, it appears there is little

loss in efficiency between the oracle-OP method and the method we propose, despite the fact that

we do not use investment, output quantity, or material input quantities. Of course, our method

makes use of the additional structure implied by the firm’s first order conditions, which is not used

within the OP framework.

To further investigate the performance of the estimators, Figure 1 plots the density of σ̂ for

the three cases. The dashed line represents the true value of σ. Clearly, our method generates

estimates that are concentrated around the true elasticity of substitution. However, the proxy-OP

method produces biased estimates of σ. This bias is economically significant, implying an elasticity

of substitution up to 20 percent lower than the true value. The intuition for a downward bias in

the elasticity of substitution is straightforward. Because of cost minimization, the physical input

ratio will change in a direction against the change in input price ratio. As a result, the change

in the input prices PM/PL may induce an opposing change in the input quantity ratio M/L, but

the effects are partially offset when only the expenditure ratio EM/EL = (PM/PL) × (M/L) is

observed.19 As expected, when we allow the researcher to observe input quantities directly, the

oracle-OP method performs well.

In addition to controlling for input price dispersion, our method allows the researcher to recover

estimates of the unobserved input prices. In short, material quantities and prices can be recovered

from (6). Figure 2 presents the kernel density estimation of the recovered material prices from our

method and compares it to the true density of material prices in the Monte Carlo.20 It shows that

19We formally derive the bias in the elasticity of substitution for the CES specification in a working paper version

of this paper.

20We present the case for true σ = 2.5, but the results from other cases are very similar.
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the recovered material price density matches the true density quite well.

4. Application: Colombian Data

To evaluate the performance of our estimator using real data, we apply our method to a dataset

of Colombian manufacturing firms from 1981 to 1989, which was collected by the Departamento

Administrativo Nacional de Estadistica (DANE).21 This application serves two purposes. The first

is to compare our results with those found using the traditional proxy method to account for

unobserved material input quantities. The second is to illustrate additional information which can

be recovered using our method, including the distribution of input prices and their relationship to

productivity.

This dataset contains detailed information about firm-level revenue (R), labor and material

input expenditure (EL and EM ), capital stock (K), employment (L), and investment (I). However,

firm-level price information about material input and output is not available. Moreover, only total

expenditure on “raw materials, materials and packaging” (EM ) rather than total quantities (M)

is available. This includes expenditure on raw materials such as cloth and gasoline, but does

not include consumption of electrical energy, “general expenses” such as professional services and

advertising, or “industrial expenses” such as spare or replacement parts, all of which are reported

separately. It is extremely common in the literature to treat materials as a homogenous input

(e.g. Levinsohn and Petrin, 2003) and our approach can be interpreted as following this tradition.

However, as shown in Section 2.2.2, our method can also be employed if firms are optimally choosing

a vector of heterogenous material inputs. In this case, the recovered material price index represents

the shadow price of increasing the use of material inputs in production. This is important since

material expenditure represents the sum of several different input types that may vary across firms

even within an industry.22

21For a detailed introduction to the data set, see Roberts and Tybout (1997).

22For the sake of simplicity as well as the comparability to the traditional proxy-based methods, we normalize κ
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First, we estimate the model using our method using the CES specification of the production

function normalized at the geometric mean as illustrated in Section 2. As a primary basis of

comparison, we also estimate the production function using materials expenditure as a proxy for

materials inputs as in Olley and Pakes (1996). To focus on the impact of input price heterogeneity,

we control for output price bias by incorporating a demand function in this approach, as suggested

in Klette and Griliches (1996). We refer to this second method as OP-KG in the text and tables.

Of course, there are many other approaches that may be used to estimate production functions.

In the supplemental materials (Online Appendix 5), we compare our method to several alternative

approaches, including employing first order conditions to recover productivity while using the proxy

approach for materials and following well-known panel data methods (Arellano and Bond, 1991).

Estimates for four large industries are displayed in Table 3: clothing, bakery products, printing

and publishing, and metal furniture.23 In all these industries, the estimate of the elasticity of

substitution is significantly lower using the OP-KG method compared with the results from our

method. This is consistent with both our intuition about the bias generated by unobserved price

dispersion and the pattern shown in the Monte Carlo experiments. Moreover, the elasticity of

substitution estimates are significantly greater than one in all industries when using our method.

This implies that production function is not likely Cobb-Douglas in these industries. The results

support the conclusion that ignoring input price dispersion will lead to inconsistent estimates of

elasticities of substitution, and that our method is capable of controlling for unobserved price

dispersion.

Biased estimates of the elasticity of substitution, σ, using the OP-KG method will contaminate

estimates of the distribution parameters. However, the direction of the bias is unclear. We find

that our method produces estimates of αK that are at least 30 percent larger, and sometimes more

than twice as large, as the estimates of αK using the OP-KG method. These results mirror the

(the degree of homogeneity of µ) to be 1 in the application.

23We have estimated the model for a wide variety of industries and found these results to be representative with

respect to the performance of the estimators. Additional results are available by request.
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findings from the Monte Carlo study, where αK is also underestimated by the proxy-OP method.

They suggest that ignoring price dispersion is likely to lead researchers to underestimate the degree

of capital intensity in production.

A key output from production function estimation is the implied productivity distribution of

firms within an industry. We find that there are substantial differences in the estimates of this

distribution between the two methods. Figure 3 shows the productivity distributions estimated

using our method and the OP-KG method for each of the four industries.24 For all industries,

the productivity distribution in OP-KG is more concentrated than using our method to control

for price dispersion. The result is most stark for the bakery products industry, where our implied

distribution has an inter-quartile range that is 3.4 times as wide as that using the OP-KG method.

But even in the clothing industry, where the two productivity distributions are most similar, our

distribution has an inter-quartile range more than 60 percent larger than is found using OP-KG.

This suggests that omitting the unobserved input price dispersion tends to underestimate the

firm heterogeneity in productivity. One possible reason might be a positive correlation between

input prices and productivity, which we report below in Table 5. Intuitively, positive correlation

between the productivity and input prices could bias productivity estimates since a firm with

low productivity tends to use low-price materials. In the OP-KG method, where all firms are

assumed to have the same material price, the total material quantity used by low-productivity

firms is underestimated, resulting in overestimates of their productivity. Similarly, OP-KG would

underestimate the productivity for high-productivity firms facing high prices. As a result, OP-KG,

by not controlling for the unobserved input prices, would underestimate the degree of productivity

dispersion within the industry. A large literature, recently reviewed by Syverson (2011), is devoted

24Figure 3 follows Olley and Pakes (1996) in defining productivity as the sum of ωit, which is known to the

firm when it chooses labor and materials, and uit which is unanticipated productivity and measurement error. In

the supplemental materials (Online Appendix 5), we compare the distributions of ωit + uit with only anticipated

productivity, ωit. We find that for both methods the distributions are fairly similar, implying that the bulk of

productivity dispersion is anticipated by firms.
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to understanding and explaining heterogeneity of productivity among firms.25 Our finding indicates

that the “true” productivity heterogeneity may be even larger than is indicated by estimations that

fail to control for unobserved input price dispersion.

In addition to results on the production function and the distribution of productivity, our

method also provides estimates of the unobserved input prices and quantities across firms. Because

these prices and quantities are recovered from the first order condition, they reflect quality-adjusted

quantity indices and the recovered prices are purged of the effect of quality differences. In Figure

4, we present the kernel density estimations of recovered material prices (in logarithm) from our

method for each of the four industries pooled across all years. In all industries, the distributions of

input prices are quite spread out, indicating that price dispersion is substantial. Our findings are

partially corroborated by studies such as Ornaghi (2006) and Atalay (2014), which observe input

prices directly and also find significant dispersion. Since our input prices are quality adjusted and

identified through variation in firms expenditure ratios, they suggest that quality differences alone

may not fully account for input price dispersion.

We are also able to use our method to analyze the dynamics of input price dispersion. While

it is not assumed in our estimation, we would expect a significant amount of persistence in firms’

input prices over time. To check this, we fit the input prices to a simple AR(1) process to analyze

their persistence. The results are reported in Table 4. In all four industries, there is quite high

persistence with mean around 0.75, which is close to the persistence reported in Atalay (2014)

where firm-level input prices and quantities are available. Thus, firms that are able to secure low

prices today are likely to be able to secure them again in the future. This gives us some confidence

that our recovered prices do not simply reflect estimation error, but are a persistent feature of

firms.

Finally, we examine the joint relationship between input prices and productivity in our sample

of firms. As shown in Table 5, the recovered input price is positively correlated with the recovered

25An earlier review of this literature is provided by Bartelsman and Doms (2000).
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productivity. That is, higher productivity firms tend to pay higher input prices. As mentioned

above, this correlation is one reason why our method indicates a higher degree of productivity

dispersion than we see in traditional methods that assume input prices are homogeneous. Table

5 also reports the correlation between input prices and observed wages, and again finds a positive

correlation—high productivity firms pay more for both labor and materials. These results are

consistent with Kugler and Verhoogen (2012), who directly examine data on input prices and

compares them with productivity estimates. In explaining their result, Kugler and Verhoogen

(2012) emphasize the quality complementarity hypothesis—input quality and plant productivity

are complementary in generating output. However, because we recover the input prices using

the marginal contribution of inputs in production, our recovered input price is quality-adjusted,

ruling out the quality-complementarity explanation. Even so, we find a positive correlation between

input prices and productivity. This indicates that alternative factors, such as plant-specific demand

shocks or market power in input sectors, as discussed in Kugler and Verhoogen (2012), may also

contribute to the positive correlation between input prices and productivity within industries.

5. Conclusion

We analyze the problem of unobserved input prices and quantities in the estimation of production

functions. Simply using expenditures as a proxy for quantities is likely to bias production function

estimates in the presence of input price heterogeneity. To account for unobserved price dispersion,

we introduce a method which exploits the first order conditions of profit maximization to jointly

recover firm-level materials quantities and prices together with productivity from observable data

on revenues, labor quantities, and expenditures.

To validate our method, we conduct Monte Carlo experiments to evaluate the performance of

our estimation method. The results confirm that ignoring unobserved price dispersion biases the

estimation when deflated values are used as proxies of quantities. In contrast, our method recovers

the true parameters very well.
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We further show that these differences matter in real data by applying the methods to a dataset

on the Colombian manufacturing sector. The results are in line with theory and the Monte Carlo

study. Specifically, the elasticity of substitution is significantly lower compared with our method

when using the expenditure proxy. In addition, our results confirm the presence of unobserved

price dispersion, and indicate that input prices and firm productivity are positively correlated. As

a result, we find significantly larger productivity dispersion in the industries we study than would

be uncovered using a traditional proxy-based estimator.

Appendix

A.1. Details of Implementation for CES Specification. In this appendix, we explicitly derive our

estimator for the normalized CES production function. Each firm j chooses labor and material

quantities to maximize the profit in each period t, given its capital stock and productivity. The

firm’s static problem is:

max
Ljt,Mjt

PjtQjt − PLjtLjt − PMjtMjt,

where the production function is,

Qjt = eωjtQ

[
αL

(
Ljt

L

)γ
+ αM

(
Mjt

M

)γ
+ αK

(
Kjt

K

)γ] 1
γ

,

and the inverse demand function is,

Pjt = Pt

(
Qjt
Qt

)1/η

.

Note that Ljt, Mjt and Qjt are physical quantities of labor and material input and output

respectively. The first order conditions with respect to labor and material are,

1 + η

η

∂Qjt
∂Ljt

Q
1/η
jt Pt

Q
1/η
t

= PLjt ,
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1 + η

η

∂Qjt
∂Mjt

Q
1/η
jt Pt

Q
1/η
t

= PMjt .

Note that ELjt = PLjtLjt and EMjt = PMjtMjt, and plug the demand function into above

equations we obtain:

1 + η

η

∂Qjt
∂Ljt

Ljt
Qjt

=
ELjt
Rjt

,

1 + η

η

∂Qjt
∂Mjt

Mjt

Qjt
=
EMjt

Rjt
,

where Rjt = PjtQjt is the revenue for firm j at period t.

Take the ratio with respective to both sides of the equations, and we can solve for material

quantity:

(19)
Mjt

M
=

[
αLEMjt

αMELjt

] 1
γ Ljt

L
.

This implies that material quantity can be recovered from observables (ELjt , EMjt , and Ljt) up to

unknown parameters. Substitute this Mjt in the first order condition for labor we have

e
1+η
η
ωjtαL

1 + η

η

Pt

Q
1/η
t

(
Ljt

L

)γ−1 Q 1+η
η

L

×
[
αL

(
Ljt

L

)γ
+ αM

(
Mjt

M

)γ
+ αK

(
Kjt

K

)γ] 1
γη

+ 1
γ
−1

= PLjt .

(20)

Multiply both sides by Ljt and use ELjt = LjtPLjt ,

e
1+η
η
ωjtαL

1 + η

η

Pt

Q
1/η
t

(
Ljt

L

)γ
Q

1+η
η

×
[
αL

(
Ljt

L

)γ
+ αM

(
Mjt

M

)γ
+ αK

(
Kjt

K

)γ] 1
γη

+ 1
γ
−1

= ELjt .

(21)

Now substitute (6) into above equation and re-arrange,
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(22)

e
1+η
η
ωjt =

1

αL

η

1 + η

Q
1/η
t

Pt

(
Ljt

L

)−γ ELjt
Q

1+η
η

[
αL

(
ELjt + EMjt

ELjt

)(
Ljt

L

)γ
+ αK

(
Kjt

K

)γ]− 1
γ
(1+ 1

η
)

Which can be solved for ωjt to yield (7) in the main text. However, it will be more straightforward

to substitute (22) directly when deriving the estimating equation. Which we turn to now.

First, we plug the production function and the inverse demand function into the revenue equa-

tion,

Rjt = exp(ujt)Pt(Qjt)Qjt,

where ujt is the measurement error, and get

Rjt = exp(ujt)
Pt

Q
1
η

t

Q
1+ 1

η

jt

= exp(ujt)
Pt

Q
1
η

t

e
1+η
η
ωjt

[
αL

(
Ljt

L

)γ
+ αM

(
Mjt

M

)γ
+ αK

(
Kjt

K

)γ] 1
γ
(1+ 1

η
)

.

Plug in (6) into above equation and we have:

(23) Rjt = exp(ujt)
Pt

Q
1
η

t

e
1+η
η
ωjt

[
αL

(
ELjt + EMjt

ELjt

)(
Ljt

L

)γ
+ αK

(
Kjt

K

)γ] 1
γ
(1+ 1

η
)

.

Using (22) to substitute out e
1+η
η
ωjt ,
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Rjt = exp(ujt)
η

1 + η

αL
(
ELjt+EMjt

ELjt

)(
Ljt
L

)γ
+ αK

(
Kjt
K

)γ
αL

(
Ljt
L

)γ
ELjt

= exp(ujt)
η

1 + η

[(
ELjt + EMjt

ELjt

)
+
αK
αL

(
Kjt/K

Ljt/L

)γ]
ELjt

= exp(ujt)
η

1 + η

[
EMjt + ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)]
.

Take logs to arrive at the estimating equation,

lnRjt = ln
η

1 + η
+ ln

[
EMjt + ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)]
+ ujt.

Therefore, the model can be estimated via the following nonlinear least square estimation with

restrictions:

(η̂, α̂, γ̂) = argmin
∑
jt

[
lnRjt − ln

η

1 + η
− ln

{
EMjt + ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)}]2

subject to
αM
αL

=
EM

EL
,

αL + αM + αK = 1.

As discussed in the paper, this nonlinear least square estimation with constraint is equivalent to

the GMM estimator defined in (12).

A.2. Monte Carlo Description. In this appendix, we outline the data generating process for the

Monte Carlo experiments. Specifically, the Monte Carlo experiments consist of N replications

of simulated data sets, given a set of true parameters of interest (η, σ, αL, αM and αK).In each

replication, we simulate a sequence of productivity (ωjt), idiosyncratic input prices (PLjt and PMjt),

and capital stock (Kjt) for each firm j over time. Given these variables and random shocks, we
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derive a sequence of optimal choices of labor and material inputs (Ljt and Mjt), the optimal output

quantity (Qjt) and price (Pjt) for firm j in each period t.

There are J firm in production for T periods. The evolution process of productivity for each

firm is assumed to be a first order Markov process:

ωjt+1 = g0 + g1ωjt + εωjt+1,

where εωjt+1 is the innovation shock realized in period t + 1, which is assumed to be a normally

distributed i.i.d. error term with zero mean and standard deviation sd(εω). The initial productivity

of each firm (ωj0) is drawn from a normal distribution of mean ω0 and standard deviation sd(ω0).

The investment rule and the capital evolution process are set as,

log(Ijt) = ξωjt + (1− ξ) log(Kjt),

Kjt+1 = Kjt + Ijt,

where ξ ∈ (0, 1) is an arbitrary weight. The initial capital stock of each firm (Kj0) is drawn from

a normal distribution of mean K0 and standard deviation sd(K0).

The idiosyncratic labor and material input prices (PLjt and PMjt) are generated as follows:

PLjt = PLte
εPLjt ,

PMjt = PMte
εPMjt ,

where shocks εPLjt and εPMjt are deviations from the industrial-level input prices PLt and PMt

(which are set to be constant 0.1 for simplicity), and these shocks are independently drawn from

N(0, sd(εPL)) and N(0, sd(εPM )) respectively.

After simulating {ωjt,Kjt, Ijt, PLjt , PMjt} for each firm j and period t,26 we derive the optimal

26In addition, for simplicity, we normalize the industrial level index Pt and Qt as 1 since we do not focus on

31



Grieco, Li, and Zhang Input Price Dispersion

labor and material input choices (Ljt and Mjt) and the corresponding output quantity (Qjt) for

each firm j and period t according to the first order conditions associated with the firm’s static

profit maximization problem. Specifically, the optimal labor input is derived as,

(24) Ljt =

(
αMPLjt
αLPMjt

) 1
γ−1

Mjt,

where the material input Mjt is given by,

(25) Mjt =

 (e−ωjtQjt)
γ − αKKγ

αM + αL

(
αMPLjt
αLPMjt

) γ
1−γ


1
γ

,

and Qjt is the solution of the following equation:

(26)
η + 1

η

 Pt

Q
1
η

t

Q
1
η

jt = e−ωjt

[
PMjt + PLjt

(
αMPLjt
αLPMjt

) 1
γ−1

]
[
αM + αL

(
αMPLjt
αLPMjt

) γ
1−γ
] 1
γ

(
1− αKKγ(e−ωjtQjt)

−γ) 1
γ
−1
.

Given the derived variables and underlying true parameters, (26) is only about Qjt. It is easy to

verify that (26) implies a unique solution for Qjt since given η < −1, the left hand side is decreasing

in Qjt while the right hand side is increasing in Qjt. Denote the solution of the equation as Q∗jt.

Once we obtain Q∗jt, we can derive the corresponding Ljt and Mjt from (24) and (25). Hence, the

expenditures of input are given by ELjt = PLjtLjt and EMjt = PMjtMjt. At last, firm level output

price Pjt is calculated by inverting Dixit-Stiglitz demand,

Q∗jt
Qt

=

(
Pjt
Pt

)η
,

aggregate shocks.

32



Grieco, Li, and Zhang Input Price Dispersion

and the firm-level revenue is

Rjt = PjtQ
∗
jt exp(ujt).

where ujt ∼ N(0, sd(u)) is the measurement error, or unanticipated productivity or demand shock.

Hence, we have generated a data set of {ωjt,Kjt, Ijt, Ljt,Mjt, ELjt , EMjt , Qjt, Rjt} for each firm

j and period t.27

27In the OP and Oracle-OP cases, researchers observe output quantity a measurement error. So we generate the

observed quantity as Qjt = Q∗
jte

ε
q
jt where εqjt ∼ N(0, sd(εq)) is the measurement error. To make the error terms

consistent, we set sd(εq) = sd(u).
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Table 1: Monte Carlo Parameter Values1

Single material Description Value

η Demand elasticity -4
σ Elasticity of substitution 0.8, 1.5, 2.5
αL Distribution parameter of labor 0.4
αM Distribution parameter of material 0.4
αK Distribution parameter of capital 0.2
g0 Parameter in productivity evolution 0.2
g1 Parameter in productivity evolution 0.95
ξ Parameter in the investment rule 0.2

sd(K0) Standard deviation of initial capital stock (in logarithm) 0.05
sd(ω0) Standard deviation of initial productivity 0.05
sd(εω) Standard deviation of productivity innovation (εω) 0.01

PL Mean price of labor 0.1

PM Mean price of materials 0.1
sd(PL) Standard deviation of labor price 0.02
sd(PM ) Standard deviation of material price 0.02
sd(u) Standard deviation of revenue measurement error (u) 0.01
T Number of periods 10
J Number of firms 100
N Number of Monte Carlo replications 1000

Multiple materials2 Description Value

σ Elasticity of substitution across primary inputs 1.5
PM1 Price of M1 (constant) 0.1
PM2 Price of M2 (constant) 0.18

PM3 Mean price of M3 0.1
sd(PM3) Standard deviation of M3 price 0.02

δ Effective factor of M1 0.65
σ1 Elasticity of substitution between M1 and M3 2.1
σ2 Elasticity of substitution between M2 and M3 2.0

1 Labor and materials prices are log-normally distributed.
2 Only parameters different from the single material input setting are listed.
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Table 3: Estimated results for Colombian industries

Clothing Bakery Products Printing & Publishing Metal Furniture

Us OP-KG Us OP-KG Us OP-KG Us OP-KG

η̂ -5.768 -8.465 -5.231 -5.253 -4.659 -12.161 -5.518 -6.947
(0.121) (1.544) (0.188) (0.417) (0.236) (5.434) (0.433) (2.686)

σ̂ 1.948 0.361 1.443 0.401 2.555 0.593 1.772 0.393
(0.234) (0.018) (0.117) (0.011) (0.405) (0.054) (0.379) (0.045)

α̂L 0.361 0.371 0.244 0.251 0.372 0.381 0.300 0.304
(0.002) (0.001) (0.002) (0.000) (0.005) (0.004) (0.005) (0.005)

α̂M 0.601 0.618 0.705 0.725 0.537 0.549 0.637 0.647
(0.003) (0.001) (0.006) (0.001) (0.007) (0.005) (0.010) (0.011)

α̂K 0.038 0.011 0.050 0.025 0.091 0.070 0.064 0.049
(0.004) (0.002) (0.007) (0.002) (0.013) (0.009) (0.015) (0.016)

ĝ0 0.008 0.101 0.039 0.148 -0.025 0.211 -0.033 0.219
(0.010) (0.011) (0.015) (0.011) (0.015) (0.039) (0.024) (0.072)

ĝ1 0.695 0.972 0.822 0.955 0.906 0.950 0.824 0.877
(0.014) (0.010) (0.012) (0.005) (0.019) (0.014) (0.026) (0.026)

#Obs 5763 2269 2377 903

Table 4: Persistence of recovered material prices

Persistence Standard Error

Clothing 0.77 0.20
Bakery Products 0.77 0.21

Printing & Publishing 0.82 0.18
Metal Furniture 0.68 0.19

Table 5: Correlations between recovered productivity and input prices in logarithm

corr(ω̂, log(P̂M )) corr(ω̂, log(PL)) corr(log(P̂M ), log(PL))

Clothing 0.76 0.60 0.26
Bakery Products 0.93 0.58 0.40

Printing & Publishing 0.68 0.88 0.68
Metal Furniture 0.85 0.65 0.48
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Grieco, Li, and Zhang Input Price Dispersion

Figure 3: Kernel density estimation of productivity ( ̂ωjt + ujt)
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Grieco, Li, and Zhang Input Price Dispersion

Figure 4: Kernel density estimation of recovered material prices in logarithm
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