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A B S T R A C T

In firm-level panel data, labor share exhibits large cross-sectional differences and a declining trend over time.
This study examines the role of non-Hicks neutral technology differences across firms and over time in explaining
these patterns. The non-Hicks neutral technology allows for differential factor-augmenting efficiencies for capital,
labor, and material, and it has direct implications on labor shares. Estimated using firm-level production data
and variation in input prices, evidence from the Chinese steel industry affirms the large heterogeneity of the
non-Hicks neutral technology across firms, and its change over time is also highly non-Hicks neutral toward
saving labor. The non-Hicks neutral technology explains over 50 percent of the 5.01-percentage points decline
in labor share in the sample period, mainly due to the evolution of heterogeneous non-Hicks neutral technology
and the resulting reallocation effect.

1. Introduction

The large cross-sectional heterogeneity of and decline in labor share
have been a global phenomenon in the past four decades. In addition
to the well-established large variation in labor share across firms, the
literature documents a significant decline in labor share in many coun-
tries and industries, using both macro data (Karabarbounis and Neiman,
2014; Harrison, 2005; Rodriguez and Jayadev, 2010) and micro data
(Kehrig and Vincent, 2017; De Loecker and Eeckhout, 2017). Most of
the global decline, as stated in Karabarbounis and Neiman (2014), “is
attributable to within-industry changes rather than to changes in industrial
composition.”

This paper provides micro evidence on how firm-level technology
heterogeneity and its evolution over time have contributed to the het-
erogeneity of and decline in the within-industry share of labor, using
data from the Chinese steel industry. To my knowledge, this is the first
paper to examine the decline of labor share and the role of non-Hicks
neutral technology in driving such changes in a development context.
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This paper begins by documenting the large heterogeneity and rad-
ical decrease of the labor share in sales among the steel-making firms
in China. The 90th/10th percentile difference in labor share in sales
within each year is the lowest in 2004 at 7.5 percentage points and
the highest in 2001 at 10.9 percentage points, or as the share of value
added the lowest in 2007 at 39.7 percentage points and the highest
in 2000 at 54.2 percentage points. From 2000 to 2007, the aggre-
gate labor share in sales dropped by 5.01 percentage points, and the
decline occurred for firms of all sizes. The largest 20 percent of firms,
whose labor share drops by 5.4 percent, contributed the most to the
decline. The heterogeneity and radical decrease of labor share can-
not be explained by the contemporaneous mild change in input prices,
given the reasonable range of substitutability across inputs in this
industry.

This study explores the importance of the non-Hicks neutral tech-
nology in driving the decline in labor share and shaping the cross-
sectional variation in labor share across firms in the Chinese steel indus-
try. Defined as a multidimensional productivity measure, the non-Hicks
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neutral technology allows for differential factor-augmenting efficien-
cies for capital, labor, and material in a gross production function. It
has direct implications for the firm’s labor share: adopting a technol-
ogy with high labor-augmenting efficiency, for instance, increases the
marginal output of labor more than that of other inputs, which is labor-
saving (labor-using) if inputs are gross complements (substitutes).

The role of non-Hicks neutral technology in driving the decline in
labor share is crucial to understand the growth of developing coun-
tries in the modern economy. The structural change literature in devel-
opment economics has identified the process of economic growth for
a developing country as employment moving out from agriculture to
manufacturing industries, and then to service industries (Lewis, 1954;
Baumol, 1967; Kongsamut et al., 2001; Acemoglu and Guerrieri, 2008;
Ngai and Pissarides, 2007). If developing countries can adopt labor-
saving technologies in manufacturing industries in particular, the same
type of cross-sector transition of employment as happened in the history
of developed countries may not occur. Consequently, recognizing non-
neutral technical differences to understand the path of economic devel-
opment is important. While a few studies have examined non-neutral
technological differences in developed countries (e.g. Doraszelski and
Jaumandreu, 2017; Oberfield and Raval, 2014), this is the first to exam-
ine such differences and their implication on labor share in a developing
economy to my knowledge.

I estimate the firm-time-specific non-Hicks neutral technology, using
firm-level production data and variation in input prices. In the model,
firms choose labor and material statically to maximize period profit and
choose investment dynamically to maximize expected long-term payoff.
The non-Hicks neutral technology influences labor share by changing
the factor demand for labor, material, and capital investment differ-
ently. The estimation uses the idea that firms’ optimal input choices
contain useful information on the non-neutrality nature of technology;
hence, the input ratios and input price ratios can be used as a proxy
for the non-Hicks neutral technology in the production function estima-
tion. Specifically, the first order conditions regarding the optimal labor
and material choices identify the relative size of the three efficiencies,
which can then be used to reduce the three-dimensional unobserved
efficiencies in the production function into one dimension. The result-
ing production function can be estimated similarly as Olley and Pakes
(1996).

The estimation results show large cross-sectional technology hetero-
geneity across firms even within this relatively narrowly defined indus-
try, which has direct implications on firm heterogeneity in labor share.
Within each year, the interquartile range is between 2.55 and 3.13 for
capital efficiency, and between 2.06 and 2.25 for labor efficiency. The
dispersion of material efficiency is smaller, but it is still economically
substantial with the within-year interquartile range between 0.30 and
0.46. This implies an advantage of 30–58 percent for the 75th percentile
material efficiency relative to the 25th percentile. The three factor-
augmenting efficiencies are positively correlated, with mediocre cor-
relation coefficients of 0.08–0.49. This scenario implies that substantial
variations emerge in technological non-neutrality across firms: some
firms are better at managing labor, while others may excel at using
material or capital. Moreover, this cross-sectional heterogeneity of the
non-Hicks neutral technology shows no evident converging trend, sug-
gesting that the variation of labor share is a persistent feature across
firms.

The non-Hicks neutral nature of technology is also important over
time. In the sample period, Chinese steel makers experienced strong
labor-saving technology changes. Labor efficiency grew much faster
(39.95 percent) than capital efficiency (27.16 percent) and mate-
rial efficiency (4.80 percent). This scenario implies an annual growth
rate of total factor productivity (TFP), the expenditure-weighted aver-
age of the three factor-augmenting efficiencies, of 10.54 percent.
This technology change is labor saving given that the inputs are
gross complements, with the elasticity of substitution estimated at
0.49.

I conduct two counterfactual experiments to evaluate the contribu-
tion of the non-Hicks neutral technology on labor share. The first anal-
ysis validates that, if technology differences were Hicks neutral across
firms and over time, the labor demand in 2007 would have been much
higher, given the same factor prices. This scenario explains 51 percent
of the 5.01-percentage points decline in labor share. This result com-
plements Oberfield and Raval (2014): both studies contend that the
non-Hicks neutral technology contributes substantially to the decline of
labor share. Oberfield and Raval (2014) infer the contribution of tech-
nology as a residual after taking out the contribution of input price
changes; I approach this question more directly by estimating the non-
Hicks neutral technology from input-output data and input price vari-
ation. The second analysis evaluates the relative contribution of the
cross-sectional heterogeneity and over-time changes in the non-Hicks
neutral technology on labor share. The findings verify that both the
over-time change and cross-sectional heterogeneity of the non-Hicks
neutral technology play important roles: the former accounts for 43
percent of the total contribution of the non-Hicks neutral technology on
the decline of labor share in the sample period; the latter contributes
57 percent.

The dynamic Olley-Pakes decomposition confirms that the decline
of labor share is mainly due to the continuing firms, which experienced
the fastest labor-saving technology change. Among all sources, realloca-
tion of production to more labor-saving incumbent firms plays the most
important role, explaining approximately 3.28 percentage points of
the 5.01-percentage points decline in labor share. Within-firm changes
explain 1.26 percentage points of the decline, and firm entry and exit
together has a much smaller net effect.

This paper contributes to the recent literature on the determinants
of the declining labor share worldwide. Various explanations have been
proposed to explain this trend at the macro level. For instance, Karabar-
bounis and Neiman (2014) attribute it to the relative decline in capi-
tal prices, Piketty and Zucman (2014) to pure capital accumulation,
and Elsby et al. (2014) to offshoring of labor-intensive tasks. Using
firm-level data, De Loecker and Eeckhout (2017) argue that the ris-
ing markup since 1980 could explain the contemporaneous decline in
labor share in the United States. Kehrig and Vincent (2017) attribute
the decline to the reallocation of market share toward less labor-using
hyper-productive manufacturing plants. This paper contributes to this
line of literature by providing direct micro evidence that the non-Hicks
neutral technology change over time at the firm level could be a pow-
erful engine that drives down the labor share. In this sense, the micro
evidence echos the macro finding that emphasizes the role of labor-
augmenting technological change in driving the decline in labor share
(e.g. Lawrence, 2015).

The paper also provides micro-founded evidence on the non-Hicks
neutral technological change, contributing to the literature which
shows aggregate labor-saving technology change in developed countries
(e.g. Gollop and Roberts, 1981; Klump et al., 2007; León-Ledesma et al.,
2010; Jin and Jorgenson, 2010).1 Acemoglu (1998, 2002) proves the
possibility of non-Hicks neutral technology change2 in a dynamic bal-
anced growth model, and Hanlon (2015) provides empirical evidence
on directed technology change at the product level, lending support
to the key predictions in Acemoglu (2002). This paper contributes to
this literature by directly estimating the production function with non-
Hicks neutral technology change using firm-level data, and by allowing
for more flexibility in the technology evolution process.

The paper extends the large literature that estimates the Hicks neu-
tral technology across firms (Olley and Pakes, 1996; Levinsohn and
Petrin, 2003; Ackerberg et al., 2015). This Hicks neutral productivity

1 Some early studies include Gollop and Jorgenson (1980), Jorgenson et al.
(1985), Gollop et al. (1987), David and Van de Klundert (1965), Kalt (1978),
Diamond et al. (1978), Sato (1970). Refer to Klump et al. (2007) for a review.

2 Acemoglu (1998, 2002) uses the term directed technology change instead.
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difference has proved to be a useful indicator to predict the first-order
performance of firms (for example, profitability, trade participation,
and entry/exit). However, it plays a less important role in explaining
the second-order ratios, such as relative input usage and labor share,
because it affects the marginal products of all inputs symmetrically.
The finding that technology is non-Hicks neutral fills this gap: firms
have different comparative advantages in using different inputs—some
firms are better at managing labor and others are better at using capital
and material—resulting in different labor shares even when they face
the same input prices.

Several recent studies develop and estimate the models of the non-
Hicks neutral technology using micro data. Brambilla et al. (2016)
identify and estimate a Cobb-Douglas production function with firm-
time-specific random coefficients on labor share in addition to the
time-specific capital and material efficiencies. They find a systematic
link between the choice of export destinations and technology dif-
ferences across firms. Raval (2017) estimates a value-added constant
elasticity of substitution (CES) production function with capital- and
labor-augmenting efficiencies and finds that labor augmenting pro-
ductivity differences are more persistent and more highly correlated
with size and exports than capital augmenting productivity differ-
ences. Using plant-level panel data for the U.S. automobile industry,
Van Biesebroeck (2003) estimates a production function with firm-
time-specific labor-saving efficiency and fixed-effect Hicks-neutral effi-
ciency, based on parametric inversion to recover unobserved produc-
tivity. Doraszelski and Jaumandreu (2017) extend this work by further
allowing the Hicks-neutral efficiency term to be firm-time-specific, and
estimate a gross CES production function with labor-augmenting effi-
ciency in addition to Hicks-neutral efficiency. Using panel data from
Spain, they deduce that technological change is biased, with both its
labor-augmenting and its factor-neutral components causing output to
grow by approximately 1.5 percent per year. In this paper, I extend
Doraszelski and Jaumandreu (2017) by further allowing the additional
material-augmenting efficiency to be flexibly estimated. This scenario
relaxes the assumption in their paper that capital and material effi-
ciencies always grow at the same rate, which is a testable empiri-
cal question.3 The introduction of material efficiency is economically
important given the large material share in the total input expendi-
ture and the potential differential ability of firms to utilize the mate-
rial. My estimation shows that capital efficiency and material effi-
ciency not only play different roles in production decision, they also
differ largely in their dispersion, with an interquartile range of 3.10
versus 0.36 in 2007, respectively. They have a positive correlation
of 0.49.

The magnitude of the elasticity of substitution among inputs largely
determines how non-Hicks neutral technological change affects labor
share. It also determines the key predictions of many economic models,
such as Acemoglu (2002) for balanced growth path, Mankiw (1995)
for differences in international factor returns, and Blanchard (1997)
for change in income shares. My micro-based estimation asserts that
the elasticity of substitution is less than one, consistent with most esti-
mates using macro data (e.g., Antràs, 2004; Klump et al., 2007, and see
León-Ledesma et al. (2010) for a review). The magnitude is also sim-
ilar to the estimates in several recent studies that use firm-level data
(Chirinko et al., 2011; Raval, 2017). Moreover, I claim that the esti-
mated elasticity of substitution is substantially lower after controlling
for non-neutral technology at the firm level, echoing Antràs (2004) who
uses macro data.

The next section introduces the data and background for this study.
Section 3 describes the estimation approach and results. Section 4

3 Doraszelski and Jaumandreu (2017) also discuss the possibility of intro-
ducing the third-dimension of productivity in the extension, similar to what I
discuss in this paper. They suggest a solution based on the first-order condition
of static capital choice when capital is flexibly adjustable, or assuming a time
trend of capital efficiency in the presence of capital adjustment friction.

reports the heterogeneity and evolution of the non-Hicks neutral tech-
nology. Section 5 quantifies the contribution of non-Hicks neutral on
the decline of labor share and the relative contribution of the hetero-
geneity and evolution of the non-Hicks neutral technology. Section 6
concludes this paper.

2. Data and facts

2.1. Data

Two panel data sets are matched for the empirical application. The
main data source is a rich, firm-level annual survey of industrial firms
in China, which was collected through annual surveys of manufacturing
enterprises and maintained by the China National Bureau of Statistics.
The panel is unbalanced and covers two types of manufacturing firms:
all state-owned enterprises (SOEs), and non-SOEs whose annual sales
are greater than 5 million RMB (approximately US $650,000). The data
set contains information on firm-level annual revenue, input expendi-
tures, wage rate, detailed firm characteristics (for example, age, owner-
ship, and location), and many other financial variables. For a detailed
description of the data set, refer to Feenstra et al. (2011), and Brandt et
al. (2012, 2014).

The main data are supplemented by using localized input and out-
put prices as proxy for firm-level prices for the steel industry. The sup-
plementary data set is from the China Economic Information Network,
which reports province-level price indexes for inputs and outputs for the
steel industry. Given that the steel industry in China has very organized
local markets for inputs and outputs, and steel makers are relatively
concentrated in the same area in each province (usually close to main
mines or ports), firms in the same area share very close prices of inputs
and outputs for the same products. Thus, province-level prices represent
firm-level prices well.4 Section 4.2 will discuss the influence of poten-
tial measurement errors in factor prices, and provide further evidence
that the results in this paper are not driven by potential measurement
errors in prices.

I further examine the sources of variation in input prices across
firms, which play an important role in identifying the non-Hicks neutral
technology. Time, space, and firm size all drive the differences of input
prices across firms. From 2000 to 2007, the average wage rate almost
doubled in this industry, and the material price index increased from
95 to 169. The output price index also increased from 102 to 131. The
spatial difference is large too. The province average wage rates in this
industry ranged from 9,150 RMB in the poor Gansu province to 23,955
RMB in the rich Guangdong province. For the material price index, the
lowest is in Guangxi Province (93.5) and highest in Chongqing Province
(224). The average output price index also varies substantially from 92
in Qinghai Province to 164 in Guangxi Province. Finally, firm size has
a mild positive correlation with wage rage, material prices, and output
prices, with the correlation coefficients at 0.13, 0.02, and 0.04 respec-
tively. Hence, in general, time and space are relatively more impor-
tant factors that drive the price differences, and firm size plays a mild
role.

This paper focuses on the steel industry in China for several reasons.
First, reasonable data are available on input prices, which are neces-
sary to estimate the non-Hicks neutral technology. Second, there was
rapid technology change in this industry driven by government policy
as will be discussed in Section 2.4. We can thus identify the changes
in the level of technology and non-neutrality even with relatively short
panels. Finally, the large dispersion of geographic and other economic

4 However, the use of localized output prices to represent the firm-level prices
does lead to a limitation in the estimation. It implies that no product differen-
tiation or heterogeneity emerges in markups within each location leading to
dispersion in firm prices.

147



H. Zhang Journal of Development Economics 140 (2019) 145–168

Table 1
Heterogeneity and declining of labor share in sales (%).

Year Firm size groupa All groups

0–20 20–40 40–60 60–80 80–100

2000 8.08b 6.19 4.75 4.67 8.75 8.40
2001 7.31 6.39 5.61 4.62 7.34 7.17
2002 7.71 5.40 4.52 3.90 6.95 6.74
2003 6.61 4.85 4.23 3.60 5.71 5.58
2004 6.51 4.40 3.57 3.23 4.29 4.23
2005 6.42 4.79 3.92 3.22 3.61 3.63
2006 6.29 4.73 3.88 3.52 3.74 3.76
2007 6.46 4.76 3.89 3.29 3.35 3.39

Changes −1.62 −1.43 −0.86 −1.38 −5.40 −5.01

a Firms are divided into five groups by firm size defined by sales, year by
year, with each group having 20% of firms within each year.
b All means are revenue-weighted.

characteristics of Chinese steel firms can be used to investigate the non-
neutral technological heterogeneity across firms.

Given that investment is not directly reported in the data. I recover
investment using the observed data on capital stock and capital depre-
ciation. After dropping observations with extreme variable values and
missing lagged variables necessary for estimation, the sample contains
24,565 observations from 2000 to 2007. Appendix G provides more
details about the sample construction, and Appendix H presents the
variable definitions. Table A1 provides summary statistics for the main
variables used in the estimation.

2.2. Heterogeneity and declining of labor share

The investigation of technological non-neutrality across firms and
over time is motivated by two facts observed in the firm-level data.
First, labor share displays large heterogeneity across firms in the steel
industry in China. The 90th/10th percentile difference of labor share
in sales within each year is the lowest in 2004 at 7.5 percentage points
and the highest in 2001 at 10.9 percentage points, with the industry
mean labor share in sales being 8.4 percent in 2000.5

In Table 1, the sample is divided into five groups of equal number
of observations according to sales within each year, and the average
labor share in sales is shown for each year-size group. A large dis-
persion of labor share exists across firms of different sizes, with labor
share displaying a slight U-shape in firm size. On average for 2007,
the mean labor share for the smallest 20 percent of the firms is 6.46
percent, which is almost twice as much as that for the second largest
group, which has the lowest labor share (3.35 percent). When using
labor share in value added, the pattern is similar; it is omitted here to
save space.

Second, the labor share features a substantial declining trend during
the data period. From 2000 to 2007, the industry average labor share
in sales decreases by 5.01 percentage points, from 8.40 to 3.39 percent.
This declining trend is shared by firms of all size groups, with the largest

5 The low labor share in revenue is typical in China, with the average labor
share in revenue being only 5.5 percent for the entire manufacturing sector in
China during the same period. The high material inputs share (approximately
80 percent in revenue) and low wage rate were the main factors contributing to
the low labor share in China. The declining labor share is also a common feature
in the manufacturing sector in China, with the labor share in revenue declining
from nearly 7% to 5% from 2000 to 2007, which shares a similar pattern in
the steel industry to be discussed later. The share of labor in value added dis-
plays a similar pattern of large cross-sectional variation in the steel industry: its
90th/10th percentile difference is the lowest in 2007 at 39.7 percentage points
and the highest in 2000 at 54.2 percentage points, with the industry mean labor
share in valued added being 36.1 percent in 2000.

Fig. 1. Evolution of the labor-material ratio and relative price in the Chinese
steel industry, 2000–2007.

group experiencing the strongest decline by 5.4 percentage points and
the medium group showing the least decline by 0.86 percentage point.
When measured by labor share in value added, the pattern is similar
and it is omitted here to save space.

2.3. Technological non-neutrality and labor demand: a first glance

The heterogeneity of input prices across firms and over time would
unlikely explain the large cross-sectional heterogeneity and sharp
decline in labor share. Fig. 1 and Table 2 examine the relationship
between input and input price ratios, and show that input price het-
erogeneity is insufficient to explain the heterogeneity and movement
in the input ratios. Fig. 1 plots the movements of the mean labor-
material price and labor-material ratios from 2000 to 2007, with the
value of the initial year normalized to be one. The labor-material price
ratio increases slightly during this period, by approximately 9 percent
in total in the seven years. By contrast, the mean labor-material ratio
decreases sharply by 51 percent during the same period. The small
change of input price ratio would unlikely explain such a sharp drop
in the labor-material ratio given that the estimated elasticity of sub-
stitution is mostly less than or close to one (Chirinko et al., 2011;
Raval, 2017; Antràs, 2004; Klump et al., 2007; León-Ledesma et al.,
2010; Chirinko et al., 2011). Fig. 1 further plots the simulated aver-
age labor-material ratio for 2000–2007, choosing 2000 as the base
year. The simulated labor-material ratio is computed on the basis of
the observed price changes and the largest estimate of the elastic-
ity of substitution, 0.775, as reported in Table 2 assuming the Hicks-
neutral technology.6 The predicted change in the labor-material ratio
is much smaller than that observed in the data, leaving a large gap
that cannot be explained by input price changes. This gap is con-
sistent with a labor-saving non-Hicks neutral technology change over
time.

6 The simulated average labor-material ratio for the year 2004, for instance,
is computed as.( L

M

)
2004

=
( L

M

)
2000

[
1 − 𝜎

(
△

PL
PM

∕ PL
PM

)]
,

where 𝜎 is the elasticity of substitution and △ PL
PM

∕ PL
PM

is the percentage change
in the labor-material price ratio from 2000 to 2004. The simulated labor-
material ratios for other years are similarly computed.
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Table 2
Input prices and input ratio: reduced-form regression.a

Variable OLS Random effect Fixed effect

(1) (2) (3) (4)

𝜎 0.775
(0.008)

0.760
(0.008)

0.761
(0.008)

0.737
(0.008)

0.573
(0.007)

0.490
(0.008)

Constant Yes Yes Yes Yes Yes Yes
Year dummy Yes Yes Yes Yes Yes
Age Yes Yes Yes Yes
Ownership Yes Yes Yes

Sigma-ub 0.7128 0.8124
Sigma-e 0.4137 0.4137
Rho 0.748 0.794

R-squared 0.274 0.295 0.297 0.314 0.311c 0.297c

a Dependent variable: labor-material ratio; independent variables: labor-material price ratio and other control variables. Standard
errors are reported in parentheses.
b Sigma-u: the between-group variance in fixed and random coefficient models; sigma-e: the within-group variance. rho: fraction
of variance due to between-groups variance.
c Overall R-squared in the fixed and random coefficient models.

Table 2 provides further evidence on that the input price ratio can
only explain a small portion of the variation in the input ratio. We take
the widely used CES production function as an example to illustrate the
idea. If technology is Hicks neutral and labor and material are flexibly
chosen to minimize costs, the input and input price ratios have a simple
relationship,

ln labor quantity
material quantity

= −𝜎 ln wage rate
material price

+ constant + 𝜉.

Here 𝜎 is the elasticity of substitution. I suppressed the subscript for
firm and year for all variables to simplify the notation. 𝜉 contains the
measurement error or any unobserved efficiency differences that are
not Hicks neutral. The elasticity of substitution, 𝜎, can be identified
from the variation of input price ratios, under the assumption that 𝜉
is uncorrelated with input price ratios. On the basis of this equation, I
use the logarithm of the labor-material ratio as the dependent variable
and run a series of ordinary least square regressions (OLS), with the
logarithm of the labor-material price ratio as the major independent
variable. The results are reported in the first four columns in Table 2.
These regressions differ from one another in the additional covariates
that are controlled for. The R-squared, as reported in the last row, is
the major interest. Even after controlling for firm characteristics such
as ownership, age, and year dummy, input prices together can only
explain less than 30 percent of the variation in the input ratio. Similar
results are found in fixed effect and random effect models, as shown in
the last two columns in Table 2. Moreover, in contrast to the U.S. case
in which increasing markup drives down the labor share since 1980s
(De Loecker and Eeckhout, 2017), the markup in the steel industry in
China in fact decreased during the sample period due to rising input
prices and intensified competition. These results corroborate that some
other factors are responsible for the large variation in the labor-material
ratio.

The non-neutral technology provides a natural explanation for these
observations. With the non-neutral technology, firms differ not only in
their absolute level of efficiency, but also in their relative efficiency
ratios. The former determines the absolute level of inputs used, or the
size of factor demand; the latter determines the relative amount of the
input used, or the composition of factor demand. More specifically,
the relative factor efficiency differentials among firms imply a differ-
ent marginal products of factors among firms, which leads to different
input ratios among firms even when their input prices are the same.
This paper estimates the effect of the non-Hicks neutral technology on
labor demand and labor share based on a structural model that allows
for flexible non-Hicks neutral technological heterogeneity, across firms
and over time.

2.4. Historical background for the technology change

This subsection reviews the historical background of technology
upgrading in the Chinese steel industry during the data period. We also
provide some background on the layoff of workers in Chinese state-
owned enterprises and show that it is unlikely to drive the radical
decline in labor share as observed in the data.

2.4.1. Technology-enhancing policy and firms’ technology investment
By the end of 1990s, although some firms in China had adopted the

advanced BOF steel making process (Basic oxygen Furnace) and contin-
uous casting technology, most firms were still using the old technology
such as open-hearth process, molded casting, and blooming mill pro-
cess. The size of key equipment (e.g. furnace) also varies substantially.
The very heterogeneous production process led to large cross-sectional
differences in input efficiencies in this industry.

Following the nationwide policy that aimed at enhancing technol-
ogy improvement in all industries in China in 1997, the steel industry
launched a large-scale technology upgrading movement starting 1999.
The government gave strong incentives to encourage firms to upgrade
their outdated technology via means such as direct subsidy and access
to loans. Investment in technology upgrading, as the share of total
investment in this industry, increased sharply to over 40 percent in
1999 from about 25 percent in 1980s.7 In 1999, the industry invested
approximately 25 billion RMB in technology upgrading, and this num-
ber rose to over 57 billion in 2002. The government further strength-
ened this policy in 2003 by announcing a complete list of outdated tech-
nology and equipment that should be terminated, and encouraged steel
makers (especially large- and medium-size ones) to upgrade their tech-
nology and equipment. Consequently, the technology upgrading invest-
ment increased to nearly 100 billion in 2003, and remained high in
subsequent years.

Since 1990s, China’s steel industry made a major breakthrough in
six key technologies and general technologies. This includes the contin-
uous casting technology, blast furnace injection pulverized coal technol-
ogy, blast furnace longevity technology, bar and wire continuous rolling
technology, slag splashing technology and comprehensive energy sav-
ing technology for process adjustment. These technologies were then
widely utilized by Chinese steel makers following their large invest-
ment in technology upgrading. Among them, the continuous casting

7 Refer to page 141 of “China’s Steel Industry: 50 Years of History” (in Chi-
nese) by Zhifu Guo etc., Metallurgical Industry Press, September 1999.
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technology has the most significant impact on productivity. The aver-
age continuous casting ratio increased from 86.97 in 2000 to 97.51
in 2005, according to “China Steel Statistics” 2000–2006 and an expert
report from World Bank.8

The technology upgrading during this period has three features.
First, the old and low-efficiency technology was replaced by more
advanced ones, and small-size equipment (for example, furnace) was
replaced by larger and more efficient ones. Second, automation was
widely adopted together with the new technology, as well as in many
other firms without replacing their core production equipment. The
automation had the potential to save a substantial amount of labor.
Third, the internet and information technology were gradually intro-
duced into the production and management process in the steel-
making firms. These changes together potentially can have a large
impact on firms’ efficiency in using capital, labor, and intermediate
inputs.

The wide use of continuous casting technology, together with tech-
nology improvement in other dimensions such as automation and adop-
tion of internet and information technology in the production process,
led to a large efficiency improvement of Chinese steel makers, as mea-
sured by different efficiency indicators popularly used in the industry.
For example, according to the “China Steel Statistics”, the comprehen-
sive energy consumption per ton of steel on average decreased from
0.92 to 0.74 ton of standard coal from 2000 to 2005. The average
utilization factor of blast furnace increased from 2.15 to 2.62 ton of
iron per cubic meter of blast furnace per day, and the utilization fac-
tor of converter increased from 31.80 to 37.01 ton of steel per cubic
meter of converter per day during the same period. The comprehen-
sive yield also increased from 92.48 percent in 2000 to 95.61 percent
in 2005.

2.4.2. Layoff in state-owned enterprises (SOE)
One possible explanation of the declining labor share, and as a result

the labor-saving technology change as estimated later in this paper,
might be the layoff of SOE workers due to the reform of SOEs starting
in the mid-1990s, as discussed in Naughton (2007). In this discussion
we show that layoff is unlikely to drive the declining labor share and
the pattern of technology change.

The large-scale reform and layoff of SOE workers first started in
early 1990s, and continued throughout the whole 1990s. The peak
of layoff happened during 1998–2000, with about 2.137 million SOE
workers being laid off in all industries in three years (especially in 1998
and 1999). The reform and layoff of SOE workers were induced by the
large financial losses arising from low productivity and excess workers
in SOE firms, which placed heavy financial burden to the government to
cover the SOE losses. The layoff mainly happened in industries that suf-
fered big losses, including coal mining, textile, machinery, and military
products according to the “China Labor Yearbook”. The textile industry
was chosen as the experimental field prior to the massive layoff in other
industries.

The impact of the reform and especially layoff was minimum in the
steel industry during our data period (2000–2007). The major reason is
that 2000–2010 was the golden time for Chinese steel industry, due to
the boom of Chinese economy and especially the boom of investment
in housing and infrastructure. The steel prices were at a relatively high
level, and steel makers (both SOEs and non-SOEs) were in general mak-
ing good profits. Consequently, there was very low pressure to reform
and layoff workers in this industry. In fact, the problem of this indus-
try did not emerge until after 2010, when the long-term impact of the
2007 financial crisis emerged and the effect of China’s fiscal stimulation
policy faded away.

8 http://siteresources.worldbank.org/INTEAPREGTOPENVIRONMENT/
Resources/ReportSteel&Iron20080104CN.pdf. Last accessed on May 2, 2019
(in Chinese).

Moreover, the facts from the data also suggest that layoff should not
be a big issue during the data period in the steel industry. First, the aver-
age number of workers per all-time SOE firm actually increased during
the data period, suggesting that the SOE layoff reform did not have
a substantial impact in the steel industry. Second, the average num-
ber of workers needed to produce 1 million RMB revenue decreased by
similar percentage for both SOEs and non-SOEs. From 2000 to 2007,
this number decreased by 66 percent for all-time private firms, and
68 percent for all-time SOEs. Finally, the estimated labor productivity
for private firms grew substantially as well, at an annualized rate of
25%. Given that private firms are not subject to layoff policy shocks,
this result further supports that the SOE layoff policy should not have
been the main driving force of the estimated improvement of labor
productivity.

The historical background suggests that there may be substantial
upgrading of technology in this industry following the technology-
enhancing policy and its resulting massive technology investment. This
paper explores how the potential technology upgrading contributes to
the decline of labor share in this industry.

3. Empirical model

This section proposes a method to estimate the production func-
tion with non-Hicks neutral technology and reports the basic estimation
results.

3.1. Model setup

This subsection sets up a descriptive model of firms’ production and
investment decisions. The purpose is to present the model components
and clarify the basic assumptions that form the basis for estimating the
production function.

Production function. The production function for firm j at time t
is CES with non-Hicks neutral technology and non-constant returns to
scale,

Qjt =
{
[exp(𝜔0

jt)Kjt]𝛾 + [exp(𝜈0
jt )Ljt]𝛾 + [exp(𝜇0

jt)Mjt]𝛾
} 𝜅

𝛾 , (1)

where Qjt denotes the output and Kjt , Ljt and Mjt denote capital, labor,
and material inputs, respectively. 𝜔0

jt , 𝜈
0
jt and 𝜇0

jt represent capital-
augmenting efficiency, labor-augmenting efficiency, and material-
augmenting efficiency, respectively. They are observed by firms at the
time of production but not by researchers, and they are the focus of
this paper. Parameter 𝛾 captures the elasticity of substitution, which
equals 1

1−𝛾 . The production function may have non-constant returns to
scale, as captured by the parameter 𝜅. The output is observed subject to
an i.i.d. normal measurement error or unobserved productivity shocks
(to both firms and researchers), 𝜀jt ∼ N(0, 𝜎2

𝜀 ); hence researchers only
observe Yjt = Qjt exp(𝜀jt).

The firm-time-specific productivity measure allows for the study of
the cross-sectional heterogeneity and evolution of non-neutral technol-
ogy over time, and its implication on labor share across firms and
over time. In particular, when the efficiency ratio (𝜔0

jt ∶ 𝜈0
jt ∶ 𝜇0

jt) dif-
fers across firms for a given date t, the ratio of the marginal products
of capital, labor, and material will be asymmetric across firms. So there
is non-neutral technology heterogeneity across firms, leading to vari-
ation of labor share across firms. Similarly, when the efficiency ratios
(𝜔0

jt ∶ 𝜈0
jt ∶ 𝜇0

jt) change over time t, technology change will affect the
marginal products of different inputs asymmetrically, leading to a non-
neutral technology change over time and change of labor share over
time. The production function with non-neutral technology in Eq. (1)
accommodates several traditional concepts of neutral technology as its
special cases. When 𝜔0

jt − 𝜈0
jt and 𝜔0

jt − 𝜇0
jt are both constant for all j and

t, the production function degenerates to a Hicks neutral technology
(Hicks, 1932). When both 𝜔0

jt and 𝜇0
jt are constant for all j and t but
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𝜈jt is not, the technology is Harrod neutral (labor-augmenting, Harrod,
1939). When both 𝜈0

jt and 𝜇0
jt are constant for j and t but 𝜔jt is not, the

technology is Solow neutral (capital-augmenting, Solow, 1960; Jorgen-
son, 1966). As a result, the three traditional concepts of technology are
all special cases of and nested in Eq. (1).

We represent the non-neutrality nature of the technology, by using
three efficiency ratios. 𝜔0

jt − 𝜇0
jt , the capital-material efficiency ratio,

measures the non-neutrality of capital efficiency relative to material
efficiency. Similarly, the labor-material efficiency ratio, 𝜈0

jt − 𝜇0
jt, mea-

sures the non-neutrality of labor efficiency relative to material effi-
ciency. 𝜔0

jt − 𝜈0
jt measures the capital-labor efficiency ratio. The three

efficiency ratios completely describe the non-neutrality of technology.
Demand. Firms face monopolistic competition in the output market,

and they are price takers in the labor and material inputs markets.9 The
demand function for firm j′s output has constant demand elasticity

Qjt = ΦjtP
𝜂
jt, (2)

where Pjt is the output price endogenously chosen by the firm, and 𝜂
is the constant demand elasticity. Φjt is a time-specific demand shifter
observed by the firm before choosing labor and material in each period.
Φjt is further decomposed to be a time dummy Φt common to all firms,
an unexpected i.i.d. shock 𝜉D

jt , and the effects of other observed firm
characteristics, such as firm size, age, and ownership. Assume that Φjt
can be written in the following form:

ln Φjt = Φt + 𝛼size ∗ firm size+ 𝛼age ∗ firm age

+ 𝛼own ∗ firm ownership+ 𝜉D
jt .

Productivity evolution process. The productivity vector (𝜔0
jt , 𝜈

0
jt , 𝜇

0
jt)

evolves following a vector auto regression process VAR(1),10

𝜔0
jt = 𝜌𝜔0 + 𝜌𝜔𝜔𝜔

0
jt−1 + 𝜌𝜔𝜈𝜈

0
jt−1 + 𝜌𝜔𝜇𝜇

0
jt−1 + 𝜉𝜔jt ,

𝜈0
jt = 𝜌𝜈0 + 𝜌𝜈𝜔𝜔

0
jt−1 + 𝜌𝜈𝜈𝜈

0
jt−1 + 𝜌𝜈𝜇𝜇

0
jt−1 + 𝜉𝜈jt , (3)

𝜇0
jt = 𝜌𝜇0 + 𝜌𝜇𝜔𝜔

0
jt−1 + 𝜌𝜇𝜈𝜈

0
jt−1 + 𝜌𝜇𝜇𝜇

0
jt−1 + 𝜉𝜇jt .

Here all 𝜌′s are parameters and (𝜉𝜔jt , 𝜉
𝜈
jt , 𝜉

𝜇
jt ) are the productivity shocks,

which are i.i.d. across firms and over time, to corresponding efficien-
cies. Note that the efficiencies can have an impact on each other in the
next period.

Production and investment decisions. Firms make two decisions
each period: production decisions and investment decisions. At the
beginning of each period, firms choose their own labor and material
statically to maximize period profits, observing technology, capital,
input prices, and demand status.

max
Ljt ,Mjt

{
PjtQjt − WjtLjt − PMjtMjt

}
s.t. Qjt =

{
[exp(𝜔0

jt)Kjt]𝛾 + [exp(𝜈0
jt)Ljt]𝛾 + [exp(𝜇0

jt)Mjt]𝛾
} 𝜅

𝛾 ,

Qjt = ΦjtP
𝜂
jt,

where Wjt and PMjt are the wage rate and material price for firm j at
time t, respectively. The output price, Pjt , is endogenously determined
by the market clearing condition for the differentiated product for firm

9 The price-taker assumption in the labor and material inputs market does
not preclude that firms may still have different wage rates and material prices
due to factors such as transportation costs, as discussed in Grieco et al. (2016).

10 Extending the VAR process to a Markov process is straightforward. Given
the short panel we have in the empirical analysis (eight years), I assume the
first-order VAR process. Extending this assumption further to allow for a more
general Markov process with higher order is also possible.

j at time t. The assumption of static labor choices, aside from the mate-
rial decisions, is fairly plausible in China compared with other coun-
tries. Several practical reasons emerge. First, the labor market in China
is very competitive due to the high volume of labor supply in the mar-
ket, which favors firms. Second, generally there is a lack of effectively-
enforced laws and regulations to protect workers in China. Third, labor
unions in China are very weak and, in most of the cases, they are con-
trolled by firms. These factors together result in much lower hiring and
firing costs in China, compared with developed countries, where the
labor policies and unions generally favor workers.

For expositional purpose, I denote 𝜔jt = 𝜔0
jt − 𝜇0

jt , 𝜈jt = 𝜈0
jt − 𝜇0

jt , and
𝜇jt = 𝜅𝜇0

jt . Then the optimal labor and material demands are deter-
mined by the associated first-order conditions,

𝜅
1 + 𝜂
𝜂

Φ
−1
𝜂

jt Q
1
𝜂

jt

{
[exp(𝜔jt)Kjt]𝛾 + [exp(𝜈jt)Ljt]𝛾 + M𝛾

jt

} 𝜅
𝛾
−1

× exp(𝜇jt) exp(𝛾𝜈jt)L
𝛾−1
jt = Wjt, (4)

𝜅
1 + 𝜂
𝜂

Φ
−1
𝜂

jt Q
1
𝜂

jt

{
[exp(𝜔jt)Kjt]𝛾 + [exp(𝜈jt)Ljt]𝛾 + M𝛾

jt

} 𝜅
𝛾
−1

× exp(𝜇jt)M
𝛾−1
jt = PMjt. (5)

The endogenous variables are Ljt and Mjt , and the exogenous variables
are 𝜔jt , 𝜈jt , 𝜇jt ,Wjt ,PMjt , Kjt , and Φjt . To simplify the analysis, I further
assume that the production and demand functions satisfy regular con-
ditions such that there is a unique interior solution to Eqs. (4) and
(5). The optimal input demands for labor and material, as a result,
are functions of the state variables, L∗jt = L(𝜔jt , 𝜈jt , 𝜇jt,Wjt ,PMjt ,Kjt ,Φjt)
and M∗

jt = M(𝜔jt, 𝜈jt , 𝜇jt ,Wjt,PMjt ,Kjt ,Φjt). Accordingly, the labor share
in sales also depends on the state variables, including non-Hicks neutral
technology, input prices, demand factor, and capital stock. The capital
stock may not be optimal due to friction or any other form of distor-
tions.

Investment (in logarithm), ijt , is chosen dynamically to maximize
the expected firm value, given current state (𝜔jt , 𝜈jt , 𝜇jt , kjt ,PMjt ,Wjt).
So the optimal investment function can be written as a nonparametric
function ijt = i(𝜔jt , 𝜈jt , 𝜇jt , kjt ,PMjt ,Wjt). In the empirical application,
investment is defined as gross active investment, which includes the
purchase and selling of assets. Consequently, it could be positive or neg-
ative. The investment has very few inactive observations (less than 0.2
percent).11 Fig. A1 in Appendix presents the distribution of investment-
to-capital ratio.

3.2. Estimation

The parameters of interest include the production parameters (𝜅, 𝛾),
the demand elasticity 𝜂, the parameters in the productivity evolution
process (𝜌0, 𝜌𝜔, 𝜌𝜈 , 𝜌𝜇), and the firm-time-specific non-neutral produc-
tivity measure (𝜔0

jt , 𝜈
0
jt , 𝜇

0
jt). The model parameters are estimated using

data on output quantity and prices, material quantity and prices, wage
rate, number of workers, book value of capital stock, and investment.
The identification is straightforward. First, the demand parameters are
separately identified in the demand function. To estimate the produc-
tion parameters, the usual transmission bias caused by the correla-
tion between the unobserved productivity and input choices is present,
because firms observe their productivity before choosing labor and
material inputs, as in Olley and Pakes (1996), Levinsohn and Petrin
(2003), and Ackerberg et al. (2015). The new challenge is that we

11 Among all the observations, 69.75 percent have positive investment, 30.07
percent have negative investment, and 0.18 percent have zero investment (45
of 24,565).
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have multi-dimensional unobserved factor efficiencies arising from the
general non-Hicks neutral technology. The key source of variation to
identify the production function with non-Hicks neutral technology is
the variation in input prices and input usage ratios. Given the demand
parameters, the variation in input prices and input usage ratios identi-
fies the relative size of the three efficiencies, as shown in the first order
conditions regarding firms’ optimal labor and material choices. This sce-
nario allows us to reduce the original production function with multi-
dimensional unobserved efficiencies into one with one-dimensional
unobserved efficiency, which is readily identified following Olley and
Pakes (1996).

Specifically, multiplying both sides of the first-order conditions in
Eqs. (4) and (5) by Ljt and Mjt , respectively, and dividing both sides by
PjtQjt yields the first-order conditions in “share form”:

𝜅 1+𝜂
𝜂

exp(𝛾𝜈jt)L
𝛾
jt{

[exp(𝜔jt)Kjt]𝛾 + [exp(𝜈jt)Ljt]𝛾 + M𝛾
jt

} = S∗Ljt , (6)

𝜅 1+𝜂
𝜂

M𝛾
jt{

[exp(𝜔jt)Kjt]𝛾 + [exp(𝜈jt)Ljt]𝛾 + M𝛾
jt

} = S∗Mjt , (7)

where S∗Ljt ≡
Wjt Ljt
Pjt Qjt

and S∗Mjt ≡
PMjtMjt
Pjt Qjt

are the shares of labor and material
in revenue. One advantage of the share-form first-order condition is
that the demand shifter, Φjt , and the scaled material efficiency, 𝜇jt , are
absorbed in labor share and material share. Therefore, we can solve
for the two efficiency ratios, 𝜔jt and 𝜈jt , directly from the share-form
first-order conditions if 𝛾 ≠ 0.12

𝜈jt =
1
𝛾

ln
S∗Ljt

S∗Mjt
+ ln

Mjt
Ljt

, (8)

𝜔jt =
1
𝛾

ln
S∗Kjt

S∗Mjt
+ ln

Mjt
Kjt

= 1
𝛾

ln
⎛⎜⎜⎝
𝜅 1+𝜂

𝜂

S∗Mjt
−

S∗Ljt

S∗Mjt
− 1
⎞⎟⎟⎠+ ln

Mjt
Kjt

. (9)

Where S∗Kjt = 𝜅 1+𝜂
𝜂

− S∗Ljt − S∗Mjt is the revenue elasticity of capital,
although it may not optimally correspond to the capital costs due to
potential capital adjustment friction or other distortions in the cap-
ital market. The intuition of these two equations is straightforward.
Given that the labor-material ratio depends on input prices and the
labor-material efficiency ratio, the latter can be recovered from the
variation in labor-material ratio and expenditure share ratio. A simi-
lar idea applies to the capital-material efficiency ratio, except that the
capital share is replaced by the implied revenue elasticity of capital,
which may be subject to distortions. The idea of exploiting the first-
order conditions of profit maximization in the production function esti-
mation is widely used in the literature (e.g., Van Biesebroeck, 2003;
Gandhi et al., forthcoming; Doraszelski and Jaumandreu, 2013; Grieco
et al., 2016; Oberfield and Raval, 2014).13

Given that output is observed with noise, Yjt = Qjt exp(𝜀jt), replac-
ing 𝜔jt and 𝜈jt in the production function by Eqs. (8) and (9) yields

lnYjt = 𝜇jt +
𝜅
𝛾

ln
(
𝜅

1 + 𝜂
𝜂

)
+ 𝜅lnMjt −

𝜅
𝛾

lnS∗Mjt + 𝜀jt. (10)

This equation reduces the original three-dimensional unobserved pro-
ductivity measure to be one-dimensional, so it can be estimated using

12 This condition naturally excludes the Cobb-Douglas production function,
which is well known not to accommodate factor-augmenting efficiencies.

13 More papers use similar first-order conditions of labor and material in other
scenarios. For instance, Epple et al. (2010) develop a procedure to estimate the
housing supply function using the first-order condition of the indirect profit
function maximization; De Loecker (2011), De Loecker and Warzynski (2012),
and De Loecker et al. (2012) use the first-order condition of labor and/or mate-
rial choice of profit maximization to estimate firm-level markup.

the standard approaches, such as Olley and Pakes (1996), Levinsohn
and Petrin (2003), and Ackerberg et al. (2015), by using investment or
other proxies for 𝜇jt .

First-stage estimation. We use investment as the proxy for
the augmented material efficiency 𝜇jt in Eq. (10), following Olley
and Pakes (1996), Ackerberg et al. (2015), Aw et al. (2011), and
Zhang (2017). Firms’ dynamic decisions imply the following cap-
ital investment function: ijt = i(𝜔jt , 𝜈jt , 𝜇jt , kjt ,PMjt ,Wjt). Given that
the input prices and wage rate may be persistent over time,
the estimation allows them to have an impact on firms’ dynamic
capital investment decisions. The investment function is strictly
monotonic in 𝜇jt conditional on (𝜔jt , 𝜈jt , kjt ,PMjt ,Wjt).14 Therefore,
the investment function can be inverted to solve for the scaled
material efficiency, 𝜇jt = 𝜇(ijt , 𝜔jt , 𝜈jt , kjt ,PMjt ,Wjt). Replacing 𝜔jt =

𝜔jt(mjt , kjt ,
S∗Ljt
S∗Mjt

, S∗Mjt) and 𝜈jt = 𝜈jt(mjt, ljt ,
S∗Ljt
S∗Mjt

) in the 𝜇(·) function by

Eqs. (8) and (9), the unobserved scaled material efficiency 𝜇jt is recov-
ered as a nonparametric function of the observed variables, 𝜇jt =

𝜇

(
ijt , ljt,mjt , kjt ,PMjt ,Wjt,

S∗Ljt
S∗Mjt

, S∗Mjt

)
. Replacing 𝜇jt in Eq. (10) by the

above equation leads to the first-stage estimation equation:

ln Yjt = 𝜙(ijt , ljt ,mjt , kjt ,PMjt,Wjt ,
S∗Ljt

S∗Mjt
, S∗Mjt)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜙jt≡𝜇jt+

𝜅
𝛾

ln(𝜅 1+𝜂
𝜂

)+𝜅 ln Mjt−
𝜅
𝛾

ln S∗Mjt

+ 𝜀jt (11)

In the empirical exercise, I parameterize the function 𝜙(·;𝛼) as a poly-
nomial function up to third order, with 𝛼 being the polynomial param-
eters. I also control for firm age, ownership, and a full set of time dum-
mies in the estimation. By assumption, the right-hand-side variables
are uncorrelated with the measurement error 𝜀jt . This equation then
can be estimated using nonlinear least squares or generalized method of
moments (GMM). The estimation separates the measurement error from
the prediction term in (11), denoted as 𝜀jt and 𝜙jt separately. From the
definition of 𝜙jt in Eq. (11), the scaled material efficiency can be recov-
ered as a function of observables up to unknown parameters (𝜅, 𝛾, 𝜂),

𝜇jt = 𝜙jt +
𝜅
𝛾

ln S∗Mjt − 𝜅 ln Mjt −
𝜅
𝛾

ln
(
𝜅

1 + 𝜂
𝜂

)
. (12)

Given Eqs. (8) and (9) and the relationship between (𝜔jt , 𝜇jt , 𝜈jt)
and (𝜔0

jt , 𝜇
0
jt , 𝜈

0
jt), the original non-Hicks neutral technology measure

(𝜔0
jt , 𝜇

0
jt , 𝜈

0
jt) can be recovered as follows:

𝜔0
jt = 𝜔jt + 𝜇0

jt =
1
𝜅
𝜙jt +

1
𝛾

ln
(
𝜅

1 + 𝜂
𝜂

− S∗Ljt − S∗Mjt

)
− ln Kjt −

1
𝛾

ln
(
𝜅

1 + 𝜂
𝜂

)
, (13)

𝜈0
jt = 𝜈jt + 𝜇0

jt =
1
𝜅
𝜙jt +

1
𝛾

ln S∗Ljt − ln Ljt −
1
𝛾

ln
(
𝜅

1 + 𝜂
𝜂

)
, (14)

𝜇0
jt =

1
𝜅
𝜇jt =

1
𝜅
𝜙jt +

1
𝛾

ln S∗Mjt − ln Mjt −
1
𝛾

ln
(
𝜅

1 + 𝜂
𝜂

)
. (15)

14 The invertibility condition is generally satisfied. Basically we want to
show that the investment function is strictly increasing in 𝜇jt , conditional on
(𝜔jt , 𝜈jt , kjt ,PMjt ,Wjt). Consider an increase in 𝜇jt by Δ𝜇jt . It is equivalent to
an increase in 𝜇0

jt by 1
𝜅
Δ𝜇jt because 𝜇jt = 𝜅𝜇0

jt . Note that 𝜔jt = 𝜔0
jt − 𝜇0

jt and
𝜈jt = 𝜈0

jt − 𝜇0
jt . Conditioning on (𝜔jt , 𝜈 jt , kjt ,PMjt ,Wjt) requires that both 𝜔0

jt and
𝜈0

jt also increase by the same amount, 1
𝜅
Δ𝜇jt , as 𝜇0

jt . So the invertibility condi-
tion here is equivalent to the condition that “when capital, labor, and material
efficiencies all increase by the same amount (i.e. a Hicks-neutral technology
change), investment increases strictly”, which is the same condition as in Olley
and Pakes (1996).
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Second-stage estimation. Using the VAR(1) assumption on the factor-
augmenting efficiencies defined in Eq. (3), the i.i.d. productivity shocks
(𝜉𝜔jt , 𝜉

𝜇
jt , 𝜉

𝜈
jt) in the productivity evolution process can be recovered, with

(𝜔0
jt , 𝜇

0
jt, 𝜈

0
jt) and their lags being replaced by Eqs. (13)–(15). In addition,

the demand shock (𝜉D
jt ) can be recovered from the demand function as

𝜉D
jt = ln Qjt − (𝜂 ∗ ln Pjt +Φt + 𝛼size ∗ firm size + 𝛼age ∗ firm age

+ 𝛼own ∗ firm ownership). (16)

Denote 𝜉jt = (𝜉𝜔jt , 𝜉
𝜇
jt , 𝜉

𝜈
jt , 𝜉

D
jt ). The resulting moment condition is

E(Z′
jt𝜉jt) = 0,

where the matrix Zjt = (Z𝜔
jt ,Z

𝜇
jt ,Z

𝜈
jt ,Z

D
jt ) contains instrumental variables

associated with the evolution process for each of the factor-augmenting
efficiency and demand functions.

The parameters governing the evolution process of the efficien-
cies, all 𝜌′s, are naturally identified by their corresponding lag terms
(𝜔0

jt−1, 𝜈
0
jt−1, 𝜇

0
jt−1), which are the best IVs to identify the 𝜌′s given other

parameters. To make use of this idea to improve estimation efficiency, I
concentrate out all the 𝜌′s in the GMM estimation, and let the optimizer
in GMM to iterate only on (𝜅, 𝛾, 𝜂, 𝛼size , 𝛼age, 𝛼own) plus year effects.
Given all these parameters, the 𝜌′s are estimated within each iteration
using linear least squares. The IVs are chosen as follows:

Z𝜔
jt = Z𝜇

jt = Z𝜈
jt =

(
S∗Mjt−1, ln(

PMjt
PLjt

),1
)
,

ZD
jt =

(
ln(Wjt), ln(PMjt), kjt ,firm age, firm ownership, year fixed effects

)
.

The parameter estimates are in general robust to different choices of
reasonable instrumental variables. I collect all the model parameters
(including 𝜌′s) in 𝜃. 𝜃 can then be estimated by minimizing a sample
version of the above moment conditions using GMM,

𝜃 = min
𝜃

(
1
N
∑
j,t

Z′
jt𝜀jt

)′

W

(
1
N
∑
j,t

Z′
jt𝜀jt

)
. (17)

All the parameters are estimated using iterated GMM using the
variance-covariance matrix of the moments estimated from the pre-
vious iteration to approximate the optimal weighting matrix W in
each iteration. Then the original level of factor-augmenting efficien-
cies, (𝜔0

jt , 𝜈
0
jt , 𝜇

0
jt), can be recovered accordingly from Eqs. (13)–(15).

The Standard error of the parameter estimates can be constructed using
bootstrapping.

Measurement error in shares. Sometimes the input shares, S∗Ljt
and S∗Mjt , may be measured with errors. In particular, they may con-
tain the same measurement errors as in the revenue, because the input
shares in the data are calculated as the ratio of the input expenditures to
sales. Specifically, the observed input shares in the data are defined as
follows: SLjt ≡

WjtLjt
PjtYjt

= S∗Ljt exp(−𝜖jt) and SMjt ≡
PMjtMjt
PjtYjt

= S∗Mjt exp(−𝜖jt).

Here 𝜖jt ∼ N(0, 𝜎2
𝜀 ) is the i.i.d. measurement error or unobserved pro-

ductivity shocks in output. The first-stage estimation Eq. (11) must be
slightly adjusted to address this issue, by replacing S∗Ljt and S∗Mjt by their
observed counterparts,

ln Yjt = 𝜙(ijt , ljt,mjt , kjt ,PMjt ,Wjt,
SLjt
SMjt

, ln SMjt + 𝜀jt)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜙jt≡𝜇jt+
𝜅
𝛾

ln(𝜅 1+𝜂
𝜂

)+𝜅 ln Mjt−
𝜅
𝛾

ln S∗Mjt

+ 𝜀jt ≡ 𝜙(·, 𝜀jt). (18)

Note that the error 𝜀jt is canceled out in the ratio SLjt
SMjt

. In Appendix I,

I prove that the function 𝜙(·, 𝜀jt) is strictly increasing in 𝜀jt under mild
conditions. Given the strict monotonicity condition, Imbens and Newey
(2009) show that the structural function 𝜙(·) is nonparametrically iden-
tified upon normalization of the distribution of 𝜖jt , given existence of

an instrumental variable (IV) for the endogenous variable (SMjt in our
case). They also propose a two-step series estimator to estimate the
function structurally and do inference. Torgovitsky (2016) develops a
semiparametric minimum distance independence estimator based on IV
when the function 𝜙(·, 𝜀jt) is parameterized, which does not require
normalization of the scale of the error term.

In the empirical exercise, I parameterize the function 𝜙(·) as a poly-
nomial function 𝜙(·) = 𝜙(·;𝛼) up to third order except for the argu-
ment S∗jt , which is taken as linear to simplify the empirical implemen-
tation. Here 𝛼 denotes the set of polynomial parameters. This simplifi-
cation allows solving for the i.i.d. shock term 𝜀jt analytically, so that a
standard GMM can be applied.15 Given the polynomial approximation,
we can solve for the error term, 𝜀jt , from Eq. (18) as follows:

𝜀jt =
[

ln Yjt − 𝜙(ijt , ljt,mjt , kjt ,PMjt ,Wjt,
SLjt
SMjt

, SMjt ;𝛼)
]
∕(1+ 𝛼SM

), (19)

where 𝛼SM
is the parameter of SMjt in the function 𝜙(·, 𝜀jt). Then the

polynomial parameter 𝛼 can be estimated using GMM based on moment
conditions, E

(
Z′

1jt𝜀jt

)
= 0. Here Z1jt is the set of instrumental variables

including all polynomial terms of (1, ijt, ljt ,mjt , kjt ,PMjt ,Wjt,
SLjt
SMjt

, SMjt−1)
up to third order, which are uncorrelated with the error term 𝜀jt by
assumption. Here the lagged material-revenue share SMjt−1 is used as

the IV for SMjt . The expenditure share ratio SLjt
SMjt

is uncorrelated with
the error term, because 𝜀jt is canceled out in the ratio. The estimate
of the error term 𝜀jt , denoted as 𝜀jt , can be computed from Eq. (19).
Accordingly the estimate of 𝜙jt and the model-predicted material and
labor shares can be calculated by 𝜙jt = ln Yjt − 𝜀jt , Ŝ∗Mjt = SMjt exp(𝜀jt),
and Ŝ∗Ljt = SLjt exp(𝜀jt). Replacing S∗Ljt and S∗Mjt by Ŝ∗Ljt and Ŝ∗Mjt , the sec-
ond stage estimation carries on exactly.16

The estimation results reported in the rest of the paper are based on
the refined estimation. We also tested the sensitivity of our estimation
results to the size of measurement errors by manually adding additional
disturbance in revenue (and as a result labor and material shares). The
estimation results are very similar and all of our main results are robust.
To save space, we omit these tables here and they are available upon
request.

3.3. Empirical results

I estimate the model using an unbalanced panel of firms from the
steel industry in China from 2000 to 2007. The estimates of the produc-
tion parameters and evolution process of the factor-augmenting effi-
ciencies are reported in Table 3. The return to scale is close to one
(𝜅 = 0.961), indicating that technology in this industry has almost
constant returns to scale. The estimated elasticity of substitution, which
is defined as 1

1−𝛾 , equals 0.489. This is close to the firm-level estimates
in Chirinko et al. (2011) with common factor-augmenting efficiencies
across firms (0.4), and in Raval (2017) with heterogeneous factor-
augmenting efficiencies (0.5). However, it is lower than that estimated

15 Alternatively, we can allow for a more flexible functional form of 𝜙(·;𝛼) in
S∗Mjt at the cost of a more complicated estimator. In this case, Simulated GMM
or the two-stage estimator developed in Torgovitsky (2016) can be applied.
Or alternatively, we can use local linear estimator in the first stage given the
nonparametric identification result.

16 In the empirical estimation, we also deal with outliers with negative rev-
enue elasticity of capital, which by assumption should be positive. We assume
that these outliers are caused by measurement errors on output, which has been
estimated in the first stage, and adjust the elasticity accordingly. Specifically, I
calculate the expected measurement error generating the negative elasticity and
remove it from the corresponding revenue. We then use the error-free revenue
to calculate labor and material shares, which ensure positive capital elasticity
used to recover capital efficiency in Eq. (13).
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Table 3
Estimates of the production function and productivity evolution
process.

Parameter Estimates Standard error

𝜅 0.961 0.000
𝛾a −1.045 0.058

Capital efficiency: 𝜔0
jt

𝜌𝜔𝜔 0.523 0.008
𝜌𝜔𝜈 0.074 0.011
𝜌𝜔𝜇 0.126 0.051
𝜌𝜔0 −2.260 0.083

Labor efficiency: 𝜈0
jt

𝜌𝜈𝜔 −0.038 0.004
𝜌𝜈𝜈 0.841 0.005
𝜌𝜈𝜇 0.235 0.023
𝜌𝜈0 0.525 0.037

Material efficiency: 𝜇0
jt

𝜌𝜇𝜔 −0.007 0.001
𝜌𝜇𝜈 0.012 0.002
𝜌𝜇𝜇 0.611 0.007
𝜌𝜇0 0.186 0.012

a The implied elasticity of substitution is 1
1−𝛾 = 0.489, with boot-

strapped standard error 0.014.

using aggregate data in general. For example, Klump et al. (2007) esti-
mate an elasticity of substitution at 0.51 under factor-augmenting effi-
ciency using aggregate U.S. data from 1953 to 1998. Antràs (2004)
estimates it at 0.80 under factor-augmenting efficiency, and 0.94–1.02
under the Hicks-neutral efficiency assumption, also using aggregate U.S.
data from 1948 to 1998. The less-than-one elasticity of substitution
in our estimation suggests that inputs are gross complements to each
other, which is the key for predicting many firm behaviors. For exam-
ple, it implies that labor-augmenting technology change is labor-saving
and that firms using a technology with higher labor-augmenting effi-
ciencies employ less labor.

A comparison with Table 2 also shows that omitting the non-
neutrality feature of technology will cause a substantial upward bias
in the estimates of elasticity of substitution. This is due to the poten-
tial correlation between the omitted non-neutral technology and input
price ratios. Assuming Hicks neutral technology, the OLS estimates of
elasticity of substitution in Table 2 range from 0.737 to 0.775, which
is more than 50 percent higher than that estimated in the full model
when non-neutral technology is allowed. This result is consistent with
Antràs (2004), who also estimates a lower elasticity of substitution after
controlling for factor-augmenting efficiency using aggregate data from
the United States. The random effect and fixed effect models in Table 2
partially correct for the omitted variable bias, because the unobserved
labor-material efficiency ratio is persistent over time as will be shown
later in this paper. As a result, the estimates from these two models
are closer to the structural estimate. In the random effects model, the
elasticity of substitution is 0.573, which is just slightly higher than that
estimated in the full model. In the fixed effect model, the estimated
elasticity (0.490) is statistically the same to that derived in the full
model.

The factor-augmenting efficiencies are persistent over time. Nearly
52 percent of the capital efficiency can be carried over to the next
period (𝜌𝜔𝜔 = 0.523). The persistence parameters for labor and mate-
rial efficiency are even higher, at 84 percent for labor efficiency and
61 percent for material efficiency. The strong persistence of factor-
augmenting efficiencies advocates that the heterogeneity of the non-
neutral technology across firms could be an important firm characteris-
tic that potentially influences firm activities persistently. The estimate
also suggests a generally positive cross effect among the three efficien-
cies. For instance, higher labor and material efficiencies contribute to

Table 4
Estimates of the demand function.

Parameter Estimates Standard error

𝜂 −3.587 0.001
Size effecta 0.705 0.004
Age 0.079 0.016
SOE 0.028 0.025
Year effect Yes –
Constant Yes –

a The firm size is measured by capital stock, log(K).

Table 5
Correlation: Efficiencies and input ratio.

Correlation type Correlation

Among efficiencies (𝜔0
jt , 𝜈

0
jt )

0.301
(𝜔0

jt , 𝜇
0
jt)

0.489
(𝜈0

jt , 𝜇
0
jt)

0.077
Efficiency and firm size (lnq, 𝜔0

jt)
0.032

(lnq, 𝜈0
jt )

0.495
(lnq, 𝜇0

jt)
0.127

Efficiency ratio and input ratio (𝜔0
jt −

𝜇0
jt , ln

K
M )

−0.456

(𝜈0
jt −

𝜇0
jt , ln

L
M )

−0.947

(𝜔0
jt −

𝜈0
jt , ln

K
L )

−0.516

higher next-period capital efficiency, and higher labor efficiencies con-
tribute to higher next-period material efficiency as well. The only excep-
tion is that capital efficiency may have a negative but small impact on
next-period labor and material efficiencies in this industry in the data
period.

Table 4 reports the demand parameters, which are jointly estimated
with the production parameters. The demand elasticity is 𝜂 = − 3.587
in this industry. This scenario means that a 1 percent increase in out-
put price ceteris paribus will reduce the firm demand significantly
by approximately 3.6 percent. It implies a gross markup of nearly
39 percent for the steel firms. Given that steel industry is very cap-
ital intensive with large fixed costs, the margin of the industry is
much lower than the markup. In the regression, I also control for
firm size, firm age, year effect, and ownership. The results corroborate
that larger and older firms have a higher demand. State-owned enter-
prises (SOE) have no significant impact on demand, other things being
equal.

Table 5 summarizes the basic correlations among the three effi-
ciencies. First, the three factor-augmenting efficiencies are positively
correlated with each other. The correlation between labor and cap-
ital efficiencies is 0.301. The other two correlation coefficients are
0.489 and 0.077. That the correlations among the three efficiencies
are substantially different from perfect correlation implies that the het-
erogeneity of non-neutral technology across firms is substantial. Some
firms may have advantage in one factor-augmenting efficiency, but may
have disadvantage in others. Second, the labor efficiency is strongly
positively correlated with firm size, with a correlation coefficient of
0.495. Capital efficiency and material efficiency are also positively
correlated with firm size, but the correlation is much weaker. More-
over, there is a negative correlation between input ratios and corre-
sponding efficiency ratios. This is consistent with the elasticity of sub-
stitution being less than one—a factor-augmenting efficiency change
reduces the demand for that factor when inputs are gross comple-
ments.

4. Non-Hicks neutral technology and labor share

This section examines the heterogeneity of the non-Hicks neutral
technology and its evolution over time. It also explores the relative
contribution of the three factor-augmenting efficiencies to the cross-
sectional variation and decline in labor share observed in the data.
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Fig. 2. Heterogeneity of input-specific efficiencies.

4.1. Non-Hicks neutral technology: cross-sectional heterogeneity

The non-Hicks neutral technology shows large heterogeneity across
firms, especially for the capital- and labor-augmenting efficiencies.
Within each year in the sample period, the interquartile range is
between 2.55 and 3.13 for capital efficiency, and between 2.06 and 2.25
for labor efficiency. The dispersion of material efficiency is smaller,
with the within-year interquartile range between 0.30 and 0.46, imply-
ing an advantage of 30–58 percent for the 75th percentile relative to
the 25th percentile. This scenario suggests that relative to material
efficiency heterogeneity, capital- and labor-augmenting efficiencies are
more important sources of technology heterogeneity across firms. How-
ever, the variation in material efficiency is economically significant. I
plot the kernel density of the recovered factor-augmenting efficiencies,
(𝜔0

jt, 𝜈
0
jt , 𝜇

0
jt) by pooling data from all years together in Fig. 2. The mean

is normalized to be zero. The within-year distribution is very similar; it
is not reported here to save space.

The substantial heterogeneity of technological non-neutrality
emerges across firms too, as measured by the three efficiency ratios,
capital-material efficiency ratio 𝜔0

jt − 𝜇0
jt , labor-material efficiency ratio

𝜈0
jt − 𝜇0

jt , and capital-labor efficiency ratio 𝜔0
jt − 𝜈0

jt . The interquartile
ranges of the three ratios are 2.69, 2.33, and 2.96, respectively. Fig. 3
plots the kernel density of 𝜔0

jt − 𝜇0
jt, 𝜈

0
jt − 𝜇0

jt , and 𝜔0
jt − 𝜈0

jt , by pooling
data from all years together. The within-year distributions are very
similar, and are not reported here to save space. The large disper-
sion in the efficiency ratios implies that technological non-neutrality,
aside from efficiency levels, is an important source of firm tech-
nology heterogeneity. While the level of efficiencies is important in
predicting the first-order performance of firms (e.g., level of input
demand, profitability, trade participation, and entry/exit), the non-
neutrality nature of technology is more salient in explaining the second-
order ratios, such as relative input usage and labor share, because it
affects the marginal products of all inputs symmetrically. Both sources
deserve equally important attention when analyzing firm behaviors
such as inputs demand, growth/shrinking, entry/exit, and trade deci-
sions.

The non-Hicks neutral technology is correlated to firm size system-
atically. As shown in Table 5, all three factor-augmenting efficiencies
are positively correlated with firm size, and the correlation is especially
strong for labor efficiency. Table 6 presents the mean efficiency levels
for firms of different sizes. The size groups are classified in the same
way as in Table 1, year by year. The revenue-weighted average labor

Fig. 3. Heterogeneity of technological non-neutrality.

efficiency of the largest group is about 8.4 times17 higher than that
for the smallest group. Material efficiency in general also increases in
firm size, but very slightly. The material efficiency of the group of the
largest firms is about 28 percent higher than that for the group of the
smallest firms. Comparing the small size-material efficiency correlation
with the much larger dispersion of material efficiency cross firms, it is
shown that the heterogeneity of material efficiency is not mainly driven
by the size of firms, and we should observe a large dispersion of mate-
rial efficiency even within each size group. Capital efficiency shows an
inverse-U shape with respect to firm size. The group of the largest firms
has the lowest capital efficiency, which on average is about 67 percent
lower than that of the second largest group which has the highest aver-
age capital efficiency. The differential correlation between firm size and
different factor-augmenting efficiencies again suggests that the hetero-
geneity of technology across firms is non-Hicks neutral. Large firms in
general use technologies that save labor.

4.2. Non-Hicks neutral technology: over-time change

Technology change over time is highly non-Hicks neutral. Table 7
exhibits that labor-augmenting efficiency grew the fastest during the
data period, at an annual rate of 39.95 percent on average in this
industry. This fast growth of labor efficiency may have arisen from the
technology-upgrading incentive policy issued by Chinese government
those years, as discussed in Section 2.4, which stipulated large-scale
automation and adoption of automatic control in this industry during
the data period. Capital and material efficiencies also grew substan-
tially, at rates of 27.16 and 4.80 percent per year, respectively. The
differential growth of factor-augmenting efficiencies together implies a
total factor productivity growth rate of around 10.54 percent per year,
which is defined as the weighted average of the three growth rates using
input shares as the corresponding weights.

Fig. 4 plots the evolution of the three efficiency ratios from 2000 to
2007, which represents the non-neutrality of technology. In the figure,
the solid dots represent the yearly median, and lines represent the 10th-
to-90th percentile range. The three efficiency ratios change dramati-
cally over time, together lending support to a labor-saving non-neutral
technology change over time. In particular, the labor-material efficiency
ratio grows very quickly, supporting the idea that technology change is
non-Hicks neutral toward saving labor relative to material (given that

17 exp(5.365–3.238) ≃ 8.390.
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Table 6
Firm size and non-neutral technology: Dispersion and growth.

Year Firm size groupa

0–20 20–40 40–60 60–80 80–100

Labor efficiency: 𝜈0
jt

Meana 3.238 4.017 4.466 4.963 5.365
Growth rate (%) 19.28 20.32 14.03 19.02 42.35

Material efficiency: 𝜇0
jt

Mean 0.543 0.580 0.591 0.600 0.791
Growth rate (%) 4.78 5.38 5.31 4.86 4.77

Capital efficiency: 𝜔0
jt

Mean −4.777 −4.127 −3.844 −3.893 −5.010
Growth rate (%) 15.64 17.50 16.17 15.29 28.51

All means are revenue weighted.
a Firms are divided into five groups by firm size defined by sales, year by year, with
each group having 20% of the firms within each year.

Table 7
Average annual growth rate of productivity levels (%, revenue-weighted), 2000–2007.

Capital efficiencya Labor efficiency Material efficiency Implied TFPb

27.16 39.95 4.80 10.54
a The average annual growth rate of capital efficiency from 2000 to 2007, x, is obtained
by solving the equation (1 + x)7 exp(𝜔0

jt=2000) = exp(𝜔0
jt=2007). Growth rates for labor and

material efficiencies are similarly defined.
b The implied total factor productivity (TFP) is calculated as the weighted average of the
capital, labor, and material efficiencies, using input expenditure share as the weight.

Fig. 4. Non-neutral technology change.

the elasticity of substitution is less than one). The capital-material effi-
ciency ratio increases substantially, suggesting that technology progress
saves capital relative to material in the data period. Finally, the capital-
labor efficiency ratio decreases substantially in the data period, pro-
viding further evidence that technology progress in the Chinese steel
industry was non-Hicks neutral from 2000 to 2007. It saved labor more
than capital.

The horizontal lines represent the interdecile range of the associ-
ated efficiencies. The dots are the corresponding median. The vertical
dot-dashed lines represent the median value of the associated efficiency
for the first year (2000). The first figure shows that the capital-material
efficiency ratio decreased slightly. The second figure shows that, rel-

ative to material efficiency, labor efficiency grows substantially. The
last figure shows a substantial drop of capital-labor efficiency ratio.
In sum, technology change is non-neutral toward saving labor (labor-
augmenting).

The labor-saving non-Hicks neutral technology change also displays
substantial heterogeneity across firms of different sizes. Table 6 shows
that the group of the largest firms have the highest growth rate of
labor efficiency on average at the rate of 42.35 percent, relative to
only 14.03–20.32 percent for the other four groups of relatively smaller
firms. The medium-size group and the second smallest group have the
highest growth rates of material efficiency at the rate of 5.31 and
5.38 percent respectively, relative to a slightly lower 4.77–4.86 per-
cent for the other four groups. For capital efficiency, the group of the
largest firms has the highest growth rate of 28.51 percent; the other
four groups experienced slower growth of capital efficiency at a rate
of 15.29–17.50 percent. This result affirms that the evolution of tech-
nological non-neutrality is uneven across firms of different sizes: larger
firms on average are becoming relatively more and more labor-saving,
compared with smaller firms. The differential growth rate of factor-
augmenting efficiencies—the overall average and that among different
sizes of firms—further suggests that the non-neutral technology is an
important feature of firm technology, and must be considered for under-
standing firm heterogeneity.

To show whether the non-neutral technology has been converging
over time, I calculate the interquartile range (IQR) for efficiency levels
and efficiency ratios year by year from 2000 to 2007. In general, the
non-Hicks neutral technology shows no obvious converging trend dur-
ing the data period. As shown in the first three columns in Table A2,
labor efficiency converges slightly in the first few years, but diverges
after 2004. Overall, there is no obvious convergence of labor efficiency
as measured by the interquartile range if ignoring 2000. Capital effi-
ciency diverges substantially, with the IQR increasing from 2.75 in 2000
to 3.10 in 2007. The dispersion of material efficiency also becomes even
larger, with the IQR increasing from 0.30 in 2000 to 0.36 in 2007.
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Table 8
Decomposition of TFP growth and heterogeneity.

Capital efficiency Labor efficiency Material efficiency

Contribution to TFP growth (%)a 39.6 17.7 42.7
Contribution to TFP heterogeneity (%)b 60.5 4.0 35.5
a The contribution of each component is calculated as the growth of each of C𝜔, C𝜈 , and C𝜇 relative to the
growth of TFP from 2000 to 2007.
b I first calculate the demeaned CX and TFP, by subtracting their corresponding yearly mean. The contri-
bution of each CX to the heterogeneity of TFP is defined as the coefficient of regressing the demeaned CX
on demeaned TFP for each X ∈ {𝜔, 𝜈, 𝜇}.

The last three columns in Table A2 report the IQRs of the effi-
ciency ratios, which measure the non-neutrality of technology. The
capital-labor efficiency ratio, as the main source of technological non-
neutrality, diverges over time. It further supports the idea that techno-
logical non-neutrality, as an important aspect of technology aside from
the level of technology, should not be ignored to understand firms’ tech-
nology differences for predicting firm behavior.

To understand the relative importance of the three factor-
augmenting efficiencies in shaping TFP differences, I decompose
the TFP growth and heterogeneity into the contribution of capi-
tal efficiency, labor efficiency, and material efficiency. By definition,
TFP = C𝜔 + C𝜈 + C𝜇 , where CX equals factor efficiency X multiplied
by the corresponding factor expenditure share, for all X ∈ {𝜔, 𝜈, 𝜇}. The
contribution of C𝜔, C𝜈 , and C𝜇 to the growth of TFP from 2000 to 2007
is reported in the first row in Table 8. The capital efficiency contributed
39.6 percent to the growth of TFP, labor efficiency contributed 17.7
percent, and material efficiency contributed the most (42.7 percent),
although material efficiency itself grew much slower than labor effi-
ciency. The large material share plays a role here: a small change in
material efficiency can have a large impact on TFP given the large mate-
rial expenditure share. Consequently, although material efficiency itself
grew slower than labor efficiency, it contributed more to the growth of
TFP.

The contribution of individual factor efficiencies to the cross-
sectional difference in TFP is reported in the second row in Table 8. The
capital efficiency contributed the most (60.5 percent) due to its large
cross-sectional heterogeneity. The labor efficiency contributed only 4
percent, while the material efficiency contributed 35.5 percent. Again,
the relative expenditure share plays a role here: given the large mate-
rial share, a small difference in material efficiency can have a large
impact on TFP. Consequently, although the cross-sectional heterogene-
ity of material efficiency is smaller than that of labor efficiency, mate-
rial efficiency plays a more important role than labor efficiency in driv-
ing the cross-sectional difference in TFP.

4.3. Discussion

Factor price measures. As discussed in Section 2, the localized
material prices at the province level are used as proxy for firm-level
prices. Given that the steel industry in China has very organized local
markets for inputs and outputs, and steel makers are relatively concen-
trated in the same area in each province, firms in the same area share
very close prices of inputs and output for the same products. There-
fore, we believe that the local market material prices represent firm
price well. However, it is likely that other factors, such as transporta-
tion costs and market power, may affect the effective material prices
faced by individual firms. In this discussion, I argue that it is unlikely
that these factors are driving the results.

First, the transportation costs together account for only 5.5 per-
cent in total production costs, according to the “2007 Business Logis-
tics Survey Report” based on a yearly survey of the steel makers in
China. The reported transportation costs include the total costs for
transporting both inputs and outputs. Given the large geographic dif-

ference in China, a large portion of the transportation costs may be
due to transportation costs between regions. Consequently, within each
market (province), the difference in transportation costs among firms
should not be too large. This is especially true given the fact that steel
makers in China are relatively concentrated in the same area within
each province (usually close to main mines or ports). Hence, the differ-
ence between the local market price and firms’ effective price may not
be a big issue.

Second, if market power were the issue, then we would expect that
larger firms would have lower input prices. In our estimation, this
would bias upward the estimates of material-augmenting efficiency for
larger firms. However, the correlation between material efficiencies and
firm size (0.13) is small. In fact, it is much smaller than that for labor
efficiency, for which we observe the firm-level wage rate. Hence it is
unlikely that market power is a big issue.

Finally, as a thought experiment, I check the robustness of the
results by estimating several versions of the model after manually
introducing additional i.i.d. measurement errors to material and out-
put prices. Given that the transportation costs for inputs and output
together account for only 5.5 percent in total production costs, I choose
the noise level to each price to be 1, 2, and 5 percent. The estimated pat-
terns of non-Hicks neutral technology and their implications on labor
share are reported in Appendix Tables A3 and A4. In general all of the
main results are robust and not very sensitive to adding additional i.i.d.
shocks to input and output prices.

Labor quality. Another potential explanation of the estimated
improvement of labor efficiency could be the potential improvement
of labor quality. Although a direct measure of labor quality changes
over time is unavailable in the data, labor quality unlikely drives our
main results.

If labor quality improvement was substantial, then it is a valid con-
jecture that wage rate would have increased quickly in this industry,
especially given the good market conditions in the steel industry driven
by infrastructure and housing investment in China during the data
period. However, we did not observe such a pattern. The growth rate of
wage rate in the steel industry was about 10 percent each year, which
was substantially lower than the country average in manufacturing sec-
tor (13.2 percent). The slower growth of wage rate also made it hard
for steel makers to attract talent.

In fact, labor quality in the steel industry has been in general very
low. In the 2004 Census dataset in China which provides some measures
of labor quality in the Chinese Steel Industry,18 98.5% of employees did
not have a university degree and 94% of employees did not have any
technical certificate of any level.19 The low level of labor quality in the
fifth year (out of eight) in our data suggests that the improvement of
labor quality, if any, should not be large at least in the first five years
in our dataset. Hence, the impact of labor quality, if any, should not

18 Unfortunately, these labor quality measures are not available in the 2008
census data for this industry, although they are available for some other indus-
tries.

19 Technical certificate is a key certificate of labor skill in this industry, classi-
fied into high/medium/low, and no certificate.
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Table 9
Contribution of Non-Hicks neutral technology to changes in labor share from 2000 to 2007.

Data Counterfactual

(1) (2) (3)a

Has BTC
Has BTH

Remove
BTC&BTH

Remove
BTH

Remove
BTC

Labor share in 2007 (%) 3.39 5.95 4.84 4.50
Contribution to changes
in labor share (%)

−5.01 −2.56
(51%)b

−1.45
(29%)

−1.11 (22%)

a Implied by counterfactuals (1) and (2). Results are similar when conducting an independent coun-
terfactual to remove the effect of BTC.
b Share of the decline of labor share explained by each source is reported in the parenthesis.

be substantial in the data period and should not have driven our main
results.

More general production function. In our application, we focus on
the CES production function, which is widely used in the literature and
the simplest way to introduce non-Hicks neutral technology. However,
the method can be applied to a more general production function, given
some mild conditions. Appendix J provides a discussion.

5. Application: labor share in the Chinese steel industry

The non-Hicks neutral technology asymmetrically affects the
marginal output of different inputs, creating a differential effect on
firms’ optimal choice of labor, material, and capital. Hence it has direct
implications on labor share. This section evaluates the contribution
of non-Hicks neutral technology to the decline of labor share in the
Chinese steel industry based on our structural model. I also conduct
a dynamic Olley Pakes decomposition to examine the sources of the
changes in labor share and productivity.

5.1. Counterfactuals: contribution of Non-Hicks neutral technology

The steel industry in China experienced fast output growth and a
radical decline in labor share in the data period. From 2000 to 2007, the
average labor demand per firm decreased by 54 percent, but the aver-
age output per firm was more than doubled. Consequently, the labor
share in sales decreased by 5.01 percent, from 8.40 percent in 2000 to
3.39 percent in 2007. This section conducts two counterfactual exper-
iments to answer the following two questions. First, what would have
been the labor share in this industry, if there were no non-Hicks neu-
tral technology? Second, what is the relative importance of the cross-
sectional heterogeneity and over-time change of non-Hicks neutral tech-
nology in saving labor? All counterfactuals keep input prices and other
state variables fixed to highlight the effect of non-Hicks neutral tech-
nology.20

The first question is answered in the first counterfactual experi-
ment. To this purpose, I remove non-neutral technology across firms
and over time completely in the counterfactual, and assume that
all firms have the same factor-augmenting efficiency ratios in all

20 The cost, of course, is the difference between the results from the gen-
eral equilibrium analysis and partial equilibrium analysis. Considering the price
adjustment in input market equilibrium, the actual effect on labor demand of
non-neutral technology will be smaller than what we predict here, because price
adjustment will partly offset this effect. In a similar manner, if we allow firms
to adjust their investment in the counterfactual, the estimated effect of non-
neutral technology on labor demand will also be smaller. Because the main
focus of this paper is to examine the nature of technology, I refrain from the
temptation to develop a full general equilibrium model with inputs markets
clearing, in order to highlight the impact of technology on labor demand and
labor share.

years, (𝜔0 ∶ 𝜈0 ∶ 𝜇0), which is chosen as the median of the factor-
augmenting efficiencies in 2000. Then I construct a counterfactual
Hicks-neutral productivity measure, �̃�jt , in such a way that given
�̃�jt , the implied TFP for each observation equals the ones observed
in the data. The difference between the predicted labor share and
that observed in the data highlights the impact of the non-Hicks neu-
tral technology on labor share. Appendix K provides more details
on how we calculate the predicted labor share in the counterfac-
tual.

The results are reported in Table 9. As shown in counterfactual
(1), the average labor share would be higher in the counterfactual
after removing non-Hicks neutral technology completely, at 5.95 per-
cent in 2007, in contrast to the 3.39 percent in the data. As a result,
the non-Hicks neutral technology alone contributes to the decline of
labor share by 2.56 percentage points, or 51 percent of the 5.01-
percentage points decline in labor share. These results imply that the
majority of the declines in labor share was contributed by the non-
Hicks neutral technology. Input prices, together with all other factors,
explain 49 percent of the total decline of labor share in the sample
period.

In the second counterfactual experiment, I evaluate the relative
importance of the cross-sectional heterogeneity and over-time change
in non-Hicks neutral technology in driving the change of labor share.
To do so, I do a similar experiment as above, except that I remove
only the non-Hicks neutral technology dispersion across firms within
each year, but keep the non-neutral technology change over time.
Specifically, within each year t, I assume that all firms have the same
factor-augmenting efficiency ratios, (𝜔0t ∶ 𝜈0t ∶ 𝜇0t), which are cho-
sen as the median of the factor efficiency ratios of all firms in year
t. Then I construct a counterfactual Hicks-neutral productivity mea-
sure, �̂�jt , in such a way that given �̂�jt , the implied TFP for each
observation equals the ones observed in the data. I do the same for
all years, year by year. Within each year, there is no non-Hicks neu-
tral technology heterogeneity across firms. But over time there is still
non-neutral technology change. The difference between the predicted
labor demand in the counterfactual and that in the data represents
the contribution of non-neutral technology dispersion across firms.
The contribution of the non-neutral technology change over time can
be derived from the difference between the above two counterfactual
experiments.

The results are reported in column (2) in Table 9. If no non-Hicks
neutral technology heterogeneity emerged across firms, then the aver-
age labor share in 2007 would be 4.84 percent in contrast to the 3.39
percent observed in the data. So the non-Hicks neutral technology het-
erogeneity across firms explains 1.45 percentage points, or 29 percent
of the 5.01-percentage points decline in labor share. It accounts for 57
percent of the total contribution of the non-Hicks neutral technology
to the decline in labor share. The difference between these two con-
terfactuals also suggests that the non-Hicks neutral technology change
over time contributes 1.11 percentage points, or 22 percent of the
5.01-percentage points decline in labor share. It accounts for 43 per-
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Table 10
Dynamic OP decomposition of labor share and non-Hicks neutral technology.

Variable Aggregate Continuing firms Firm turnover

Within growth Reallocation Entry Exit

△labor share (%): sales weighted −5.01 −1.26 −3.28 −0.17 −0.30
△capital efficiency 1.682 1.100 0.492 0.369 −0.279
△labor efficiency 2.353 0.991 1.191 −0.038 0.219
△material efficiency 0.328 0.400 −0.062 −0.015 0.005
△ implied TFP 0.621 0.530 0.077 0.040 −0.026

cent of the total contribution of the non-Hicks neutral technology to
the decline in labor share. Hence the cross-sectional differences and
over-time changes in non-Hicks neutral technology are almost equally
important in driving the decline of labor share during the sample
period.

Of course, the counterfactual results are based on fixed input prices
and output level. If the input prices and output level were allowed to
adjust, the predicted effect of non-neutral technology on labor demand
would be smaller. The actual decline of labor demand and labor share
in this case would also depend on the strength of the equilibrium price
effects. Given that the main purpose of this paper is to understand the
nature of non-neutral technology and its implication on labor demand,
this experiment is still meaningful.

5.2. Dynamic Olley Pakes decomposition

This subsection explores the relative importance of firm improve-
ment, reallocation, and entry/exit in driving the decline in labor share,
by using a dynamic Olley Pakes (OP) decomposition of the industry’s
aggregate labor share. Specifically, the analysis decomposes the change
in industry aggregate labor share between any two periods (t = 1, 2)
into four terms as follows:

△SL = △SLC + (covC2 − covC1) + wE2(SLE2 − SLC2) + wX1(SLC1 − SLX1),

(20)

where wGt = ∑
i∈Gwit represents the aggregate market share of firm

group G ∈ {C,E,X}. covCt =
∑

i∈C(wit∣C − wt∣C)(SLit − SLt∣C) is the covari-
ance term between market share and labor share for continuing firms.
SLGt = ∑

i∈G(wit∕wGt)SLit is group G′s aggregate labor share. The first
term, △SLC represents the change in labor share for continuing firms.
The second term, (covC2 − covC1), represents the change in the covari-
ance between market share and labor share for continuing firms, which
captures the impact of reallocation among continuing firms. The last
two terms capture the contributions of entry and exit. A similar decom-
position is used in Collard-Wexler and De Loecker (2015) and Melitz
and Polanec (2015).

The decomposition results from 2000 to 2007 are reported in the
first row in Table 10. The evolution of the sales-weighted labor share
is mainly due to the continuing firms. Among all the sources, realloca-
tion contributed 3.28 percentage points, and within-firm changes con-
tributed 1.26 percentage points to the decline of labor share, in con-
trast to the 5.01-percentage points decline in total labor share at the
industry level. By contrast, the net firm turnover in total contributed
less than 0.5 percentage point to the decline in labor share, although
the industry in the data period experienced substantial firm entry and
exit.

The relatively more important contribution of continuing
firms—especially through reallocation—can be rationalized by
the change in non-Hicks neutral technology. To see this, I decompose
the non-Hicks neutral efficiency levels in the same way as labor
share, and report the results in the last three rows in Table 10. The
continuing firms contributed the largest part to the change of almost
all three efficiencies at the industry level. Given that the change is
mainly labor-saving, the continuing firms naturally contributed most
to the decline in labor share. Reallocation generates more labor-saving
technology change relative to within-firm growth (note the large
difference in material efficiencies and the large material expenditure
share), which explains the relatively greater contribution of reallo-
cation compared with within-firm changes. Moreover, new entrants
and exit contributes to a lower gap between labor efficiency and the
other two efficiencies, which explains their smaller contribution to
labor share compared with other sources. Similarly, the continuing
firms contributed the most to the growth of TFP from 2000 to 2007
in this industry. The within-firm growth of TFP contributed 85 percent
of the total TFP growth, and the reallocation among continuing firms
contributed an additional 12 percent. The net effect of entry and exit is
small.

6. Conclusion

The large cross-sectional heterogeneity and decline in labor share
have been a global phenomenon over the past four decades. Using firm-
level data from the steel industry in China, this paper documented
large cross-sectional heterogeneity and radical decline in labor share.
From 2000 to 2007, the labor share declined by 5.01 percent and aver-
age firm labor demand declined by 54 percent, while output per firm
was more than doubled. This large change in labor share and labor
demand cannot be explained by the mild change in relative factor
prices.

This study examined the role of non-Hicks neutral technology in
driving the declining trend and large variation in labor share across
firms. It estimated the firm-level non-Hicks neutral technology, and
showed large heterogeneity of non-Hicks neutral technology across
firms and swift non-Hicks neutral technology change toward saving
labor in general. Counterfactual experiments showed that non-Hicks
neutral technology explains over 50 percent of the 5.01-percentage
points decline in labor share, mainly due to the evolution of hetero-
geneous non-Hicks neutral technology and the resulting reallocation
effect. The cross-sectional differences and over-time changes in non-
Hicks neutral technology play almost equally important role in driving
these changes.
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Appendices

A. Sample construction
The basic data used in the empirical exercise are the firm-level survey data from the Chinese steel industry from 2000 to 2007. I refine this data

set by the following treatment:

• Missing and negative values: drop any observation with missing or non-positive value for any of the following variables: number of workers,
capital stock, revenue, wage expenditure, intermediate inputs expenditure.

• Firm size: drop any observation when revenue is less than RMB100,000, or the number of workers is fewer than give.
• Factor-revenue share: drop any observation when labor share in revenue is grater than 99 percent, or material share is greater than 99%, or the

sum of labor and material shares is less than 10%, or any of them is less than 0.5%, or capital share is less than 0.5%.
• Construction of firm-level investment measure: I define firm-level investment as the gross investment at the firm level during the cal-

endar year in question. The change in investment may be due to purchase of capital stock and selling existing capital stock. As a
result, the capital could increase or decrease depending on firms’ decisions on buying and selling capital. As this measure is not directly
observed in the data set, we construct gross investment at the firm level from year-end capital and capital depreciation observed in the
data.

Ijt = (year end capital)jt − (year end capital)jt−1 + (capital depreciation)jt.

In this process, I also used the year-end capital in 1999 to ensure that the investment measure is also available for 2000. We then drop the
first year of each firm appearing in the data, so that all the observations have investment measure. The histogram and kernel density of the
investment-to-capital ratio are reported in Fig. A1. It is shown that the distribution is quite smooth, with zero investment less than 0.5%.After
this data cleaning, we have a sample of 24,565 observations from 2000 to 2007. The empirical application is based on this data set. I report the
summary statistics of the key variables used in the estimation in Table A1.

Fig. A1 Distribution of the Investment-to-Capital Ratio.
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Fig. A2 Non-neutral technology change: 1%, 2.5%, and 5% noise to input and output prices.
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Table A1
Summary statistics of major variables.

Variable Notation Mean Standard deviation

Revenue Rjt 402,727.90 2,557,351.00
Capital Kjt 158,516.50 1,459,216.00
Employee Ljt 703.32 4341.87
Investment Ijt 0.58 2.03
Labor share shljt 0.04 0.04
Material share shmjt 0.80 0.10
Wage rate Wjt 15.34 17.81
Material price Pmjt 146.28 48.34
Output price Pjt 121.94 15.57
Output quantity Qjt 3252.06 20,181.63
Material quantity Mjt 2098.86 11,735.85

Table A2
(Non)Convergence of non-Hicks neutral technology: Inter-Quartile Range (IQR).

Year IQR of efficiency levels IQR of efficiency ratios

𝜔0
jt 𝜈0

jt 𝜇0
jt 𝜔0

jt − 𝜈0
jt 𝜈0

jt − 𝜇0
jt 𝜔0

jt − 𝜇0
jt

2000 2.749 2.253 0.302 2.592 2.361 2.569
2001 2.546 2.153 0.361 2.716 2.301 2.360
2002 2.645 2.149 0.384 2.486 2.330 2.522
2003 2.755 2.064 0.411 2.774 2.096 2.553
2004 2.863 2.078 0.437 3.090 2.049 2.676
2005 2.854 2.145 0.460 2.995 2.155 2.662
2006 3.131 2.188 0.413 3.163 2.197 2.925
2007 3.097 2.142 0.361 3.195 2.173 2.894

Table A3
Basic productivity patterns after adding additional noise to input and output prices.

noise level 1% noise level 2.5% noise level 5%

Panel A—Correlation: Efficiencies and input ratio (corresponding to Table 5)
(𝜔0 , 𝜈0)
0.301

(𝜔0, 𝜇0)
0.488

(𝜈0, 𝜇0)
0.075

(𝜔0, 𝜈0)
0.304

(𝜔0, 𝜇0)
0.480

(𝜈0, 𝜇0)
0.077

(𝜔0 , 𝜈0)
0.312

(𝜔0, 𝜇0)
0.480

(𝜈0, 𝜇0)
0.074

(lnq, 𝜔0)
0.030

(lnq, 𝜈0)
0.495

(lnq, 𝜇0)
0.122

(lnq, 𝜔0)
0.030

(lnq, 𝜈0)
0.494

(lnq, 𝜇0)
0.122

(lnq, 𝜔0)
0.025

(lnq, 𝜈0)
0.491

(lnq, 𝜇0)
0.116

(𝜔0 − 𝜇0 , K
M

)
−0.460

(𝜈0 − 𝜇0, L
M

)
−0.947

(𝜔0 − 𝜈0, K
L

)
−0.521

(𝜔0 − 𝜇0, K
M

)
−0.455

(𝜈0 − 𝜇0, L
M

)
−0.947

(𝜔0 − 𝜈0, K
L

)
−0.513

(𝜔0 − 𝜇0 , K
M

)
−0.503

(𝜈0 − 𝜇0, L
M

)
−0.944

(𝜔0 − 𝜈0, K
L

)
−0.558

Panel B—Firm size and non-neutral technology: Dispersion and growth (corresponding to Table 6)
firm group 0–20 20–40 40–60 60–80 80–100 0–20 20–40 40–60 60–80 80–100 0–20 20–40 40–60 60–80 80–100

labor efficiency

mean 3.221 3.998 4.445 4.940 5.337 3.250 4.030 4.477 4.975 5.373 3.274 4.062 4.517 5.020 5.410
growth (%) 19.28 20.30 14.03 18.97 42.33 19.24 20.30 14.01 19.04 42.58 19.48 20.48 14.06 19.23 42.86

material efficiency

mean 0.532 0.568 0.578 0.586 0.771 0.549 0.586 0.595 0.604 0.793 0.486 0.523 0.533 0.542 0.728
growth (%) 4.78 5.37 5.32 4.86 4.75 4.75 5.35 5.34 4.90 4.92 4.74 5.29 5.20 4.92 4.53

capital efficiency

mean −4.830 −4.167 −3.890 −3.951 −5.030 −4.514 −3.831 −3.568 −3.627 −4.742 −5.091 −4.500 −4.230 −4.276 −5.445
growth (%) 16.28 16.93 16.35 14.68 28.53 16.15 17.30 16.13 14.22 28.53 17.08 16.22 14.11 12.24 25.27

Panel C—Dispersion of efficiencies and efficiency ratios: Interquartile range
𝜔0 𝜈0 𝜇0 𝜔0 𝜈0 𝜇0 𝜔0 𝜈0 𝜇0
2.836 2.237 0.516 2.917 2.243 0.521 2.532 2.280 0.528
𝜔0 − 𝜇0 𝜈0 − 𝜇0 𝜔0 − 𝜈0 𝜔0 − 𝜇0 𝜈0 − 𝜇0 𝜔0 − 𝜈0 𝜔0 − 𝜇0 𝜈0 − 𝜇0 𝜔0 − 𝜈0

2.653 2.229 2.921 2.738 2.238 2.999 2.356 2.273 2.694

Panel D—Average annual growth rate of productivity levels (%, revenue-weighted), 2000–2007 (corresponding to Table 7)
𝜔0 𝜈0 𝜇0 TFP 𝜔0 𝜈0 𝜇0 TFP 𝜔0 𝜈0 𝜇0 TFP
27.15 39.93 4.79 10.53 27.09 40.14 4.95 10.65 24.00 40.41 4.59 9.79

Notes: The size groups of firms are defined as those in Table 1.
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Table A4
Labor share and non-Hicks neutral technology, with additional noise to input and output prices.

noise level 1% noise level 2.5% noise level 5%

Panel A—Decomposition of TFP Growth and Heterogeneity (corresponding to Table 8)

Capital
Efficiency

Label
Efficiency

Material
Efficiency

Capital
Efficiency

Labor
Efficiency

Material
Efficiency

Capital
Efficiency

Labor
Efficiency

Material
Efficiency

Contribution to TFP growth (%) 39.65 17.68 42.67 39.03 17.51 43.46 37.68 18.96 43.36

Contribution to TFP heterogeneity (%) 60.3 4.0 35.6 60.6 4.0 35.4 57.0 4.3 38.7

Panel B—Contribution of Non-Hicks neutral technology to changes in labor share from 2000 to 2007 (corresponding to Table 9)

Counterfactual Counterfactual Counterfactual

(1)Remove
BTC&BTH

(2)Remove
BTH

(3)Remove
BTC

(1)Remove
BTC&BTH

(2)Remove
BTH

(3)Remove
BTC

(1)Remove
BTC&BTH

(2)Remove
BTH

(3)Remove
BTC

Labor share in 2007 (%) 5.95 4.84 4.50 5.86 4.78 4.47 5.83 4.77 4.44

Contribution to changes
in labor share (%) −2.56(51%) −1.45(29%) −1.11(22%) −2.47(49%) −1.39(28%) −1.08(22%) 2.44(49%) 1.38(28%) 1.06(21%)

Panel B—Dynamic Olley Pakes decomposition of labor share1 and non-Hicks neutral technology (corresponding to Table 10)

aggregate continuing firms firm turnover aggregate continuing firms firm turnover aggregate continuing firms firm turnover

within reallocate entry exit within reallocate entry exit within reallocate entry exit
△K-efficiency 1.681 1.114 0.523 0.358 −0.313 1.678 1.079 0.442 0.388 −0.231 1.506 0.956 0.447 0.379 −0.277
△L-efficiency 2.352 0.989 1.183 −0.037 0.217 2.362 0.994 1.186 −0.039 0.222 2.376 0.997 1.190 −0.034 0.223
△M-efficiency 0.328 0.399 −0.063 −0.014 0.006 0.338 0.403 −0.055 −0.017 0.006 0.314 0.397 −0.076 −0.016 0.009
△TFP 0.620 0.531 0.081 0.039 −0.031 0.629 0.530 0.076 0.042 −0.018 0.584 0.507 0.059 0.041 −0.023

Notes: Labor share decomposition is the same as in Table 10, so it is omitted here.
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B. Variable definitions

The major variables used in this paper are defined as follows:

• Revenue (Rjt): total sales in year t for firm j.
• Capital stock (Kjt): year-end depreciated book value of capital stock in year t for firm j, adjusted by the yearly average utilization rate of capital

at the industry level.
• Labor employment (Ljt): number of workers employed in year t for firm j.
• Total wage expenditure (TWjt): total expenditure on wages and benefits to workers in year t for firm j.
• Wage rate (Wjt): average wage rate for firm j in year t. It is computed by dividing the wage expenditure by labor employment.
• Material expenditure (MVjt): includes all expenditure on intermediate inputs, but not capital equipments or other fixed/long-term investment.
• Capital investment (Ijt): constructed using data on capital stock and annual depreciation. It is computed as the difference between the year-end

capital stock in years t and t-1, plus yearly depreciation in year t.
• Labor share (SLjt): the ratio of total wage expenditure to revenue.
• Material share (SMjt): the ratio of material expenditure to revenue.
• Material price (PMjt): proxied by the province-level material price index where the firm is located. Because the market for the Chinese steel

industry is very organized locally, the province-level material price is very close to firm-level price. The same applies for output prices.
• Material quantity (Mjt): the ratio of material expenditure to material price.
• Output price(Pjt): proxied by the province-level output price index where the firm is located.
• Output quantity (Qjt): the ratio of revenue to output price.
• Firm age (agejt): defined as the difference between the data year and the year in which the firm started up.
• Firm ownership state-owned enterprise (own_soejt): a dummy equals 1 if more than 30 percent of the stock share is owned by the state.

C. Monotonicity of 𝜙(·, 𝜀jt) in Equation (18)

Theorem 1. (Conditional monotonicity of 𝜙(·, 𝜀jt)) The function 𝜙(·, 𝜀jt) is strictly increasing in 𝜀jt conditional on data (ijt , ljt ,mjt, kjt ,PMjt ,Wjt ,
SLjt
SMjt

, SMjt),
if the unexpected productivity shock 𝜀jt is not too large, such that

1. When 𝛾 < 0 or 𝛾 > 𝜅: S̃∗Kjt > 0 for all observations, or,

2. When 0 < 𝛾 < 𝜅: 0 < S̃∗Kjt <
1+𝜂
𝜂

𝜅
𝜅−𝛾 and 𝜕ijt∕𝜕𝜔jt

𝜕ijt∕𝜕𝜇jt
> 1 for all observations,

where S̃∗Kjt ≡ 𝜅 1+𝜂
𝜂

exp(𝜀jt) − S∗Ljt − S∗Mjt .

Proof. From Equation (10) we have

𝜕𝜙jt
𝜕𝜀jt

=
𝜕Yjt
𝜕𝜀jt

=
𝜕𝜇jt
𝜕𝜀jt

+ 1 − 𝜅
𝛾
. (C.1)

The relationship between 𝜇jt and 𝜀jt is implicitly determined in the capital investment function, from which we recover the augmented material effi-

ciency 𝜇jt . Conditional on the available data (ijt , ljt ,mjt , kjt,PMjt ,Wjt ,
SLjt
SMjt

, SMjt), the capital investment function ijt= i(𝜔jt , 𝜈jt , 𝜇jt , kjt ,PMjt ,Wjt) defines
an implicit function of 𝜇jt with respect to 𝜀jt . Using the implicit function theorem, we have

𝜕𝜇jt
𝜕𝜀jt

= −
𝜕ijt∕𝜕𝜀jt
𝜕ijt∕𝜕𝜇jt

= −
𝜕ijt∕𝜕𝜔jt
𝜕ijt∕𝜕𝜇jt

𝜕𝜔jt
𝜕𝜀jt

. (C.2)

From Eq. (9), we have

𝜕𝜔jt
𝜕𝜀jt

= −1
𝛾

𝜅 1+𝜂
𝜂

𝜅 1+𝜂
𝜂

exp(𝜀jt) − S∗Ljt − S∗Mjt

= −1
𝛾

𝜅 1+𝜂
𝜂

S̃∗Kjt

(C.3)

Combining the above three equations, we have

𝜕𝜙jt
𝜕𝜀jt

= 1
𝛾

𝜕ijt∕𝜕𝜔jt
𝜕ijt∕𝜕𝜇jt

𝜅 1+𝜂
𝜂

S̃∗Kjt

+ (1 − 𝜅
𝛾
). (C.4)

Case 1: 𝛾 < 0.
This is the case of the greatest interest, because almost all estimates of the elasticity of substitution in the literature are less than 1. In this case,

inputs are gross complements, which implies ∂ijt∕∂𝜔jt < 0. The reason is that when conditional on 𝜇jt and 𝜈jt together with other data variables
in the investment function, ∂ijt∕∂𝜔jt actually captures how capital-augmenting efficiency 𝜔0

jt changes investment, while fixing labor efficiency (𝜈0
jt),

material efficiency (𝜇0
jt) and other state variables. When the inputs are gross complements, this effect is negative. Because ∂ijt∕∂𝜇jt is always positive,

as shown in Section 3.2, 𝛾 < 0, and S̃∗Kjt > 0 by assumption, the first term in Eq. (C.4) is positive. And, because 𝛾 < 0 and 𝜅 > 0, the second term

in Eq. (C.4), (1 − 𝜅
𝛾
), is also positive. As a result, we have 𝜕𝜙jt

𝜕𝜀jt
> 0 in this case.
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Case 2: 𝛾 > 𝜅.
Because 𝛾 < 1, this case may happen only when 0 < 𝜅 < 1. In this case, inputs are gross substitutes, which implies ∂ijt∕∂𝜔jt > 0. Because

𝛾 > 0 in this case, the first term in Eq. (C.4) is positive, given that S̃∗Kjt > 0 by assumption. Also, it is straightforward to see that (1 − 𝜅
𝛾
) is also

positive. As a result, we have 𝜕𝜙jt
𝜕𝜀jt

> 0 in this case.
Case 3: 0 < 𝛾 < 𝜅.

From Eq. (C.4), 𝜕𝜙jt
𝜕𝜀jt

> 0 is equivalent to

1
𝛾

𝜕ijt∕𝜕𝜔jt

𝜕ijt∕𝜕𝜇jt

𝜅 1+𝜂
𝜂

S̃∗Kjt

+ (1 − 𝜅
𝛾
) > 0.

Given S̃∗Kjt > 0 and 𝛾 > 0, the above condition is equivalent to

S̃∗Kjt <
𝜅 1+𝜂

𝜂

𝜅 − 𝛾

𝜕ijt∕𝜕𝜔jt
𝜕ijt∕𝜕𝜇jt

.

The conditions that S̃∗Kjt <
1+𝜂
𝜂

𝜅
𝜅−𝛾 and 𝜕ijt∕𝜕𝜔jt

𝜕ijt∕𝜕𝜇jt
> 1 guarantee that this inequality holds. This completes the Proof.

D. Extension: more general production function

This section shows that the method developed in this paper can be applied to more general production function forms. I will focus on showing the
conditions under which the capital-material efficiency ratio and labor-material efficiency ratio, (𝜔jt , 𝜈jt), can be recovered from observed variables
up to parameters.21

Suppose the production function is in the flexible form

Qjt = F
[
exp(𝜔0

jt)Kjt, exp(𝜈0
jt)Ljt , exp(𝜇0

jt)Mjt

]
,

which is homogeneous of degree 𝜅. Then it can be rewritten into the transformed form as follows,

Qjt = exp(𝜇jt)F
[
exp(𝜔jt)Kjt, exp(𝜈jt)Ljt , exp(Mjt

]
.

Here the triple (𝜔jt , 𝜈jt , 𝜇jt) is defined exactly the same as that in the main text. Assuming firms choose material and labor optimally to maximize
period profit, we can derive two first-order conditions in share forms:

exp(𝜐jt)Ljt
F2
(
exp(𝜔jt)Kjt , exp(𝜈jt)Ljt ,Mjt

)
F
(
exp(𝜔jt)Kjt , exp(𝜈jt)Ljt ,Mjt

) = S∗Ljt, (D.1)

Mjt
F3
(
exp(𝜔jt)Kjt, exp(𝜈jt)Ljt ,Mjt

)
F
(
exp(𝜔jt)Kjt, exp(𝜈jt)Ljt ,Mjt

) = S∗Mjt . (D.2)

Similarly, the demand shifter and augmented efficiency 𝜇jt are absorbed in the expenditure shares, S∗Ljt and S∗Mjt, both of which are observed in
the data subject to i.i.d shocks. There are two unknowns, (𝜔jt , 𝜈jt), in this two-equation system. In principle we can solve for them uniquely if this
two-equation system is not degenerated. This can be guaranteed if the following two conditions are satisfied: (1) F(·) is strictly increasing in all

its arguments and strictly concave and (2)
El

jt𝜔
Em

jt𝜔
≠

El
jt𝜈

Em
jt𝜈

, where Ei
jt is the output elasticity of input i ∈ {l,m} and Ei

jtx =
𝜕Ei

jt
𝜕x is the derivative of output

elasticity Ei
jt with respect to efficiency x. The first condition is quite standard in the literature. The second condition basically ensures that the

capital- and labor-augmenting efficiencies affect the output elasticity of inputs differently. In the special case of CES, this condition is just that the
elasticity of substitution does not equal one. Given this condition, the idea to solve for 𝜔jt and 𝜈jt from the above share-form first-order conditions
is clear. Because 𝜔jt and 𝜈jt affect the output elasticity differently and the output elasticity determines the revenue share of inputs, we can infer 𝜔jt
and 𝜈jt from the relative revenue share of labor and material, which are observed in the data subject to i.i.d. shocks. Given these conditions, the
labor-material efficiency ratio 𝜈jt can be solved directly by dividing Eq. (D.1) by (D.2). 𝜔jt can be solved by inserting 𝜈jt back into either of the two
first-order conditions.

E. Construction of counterfactual Hicks neutral productivity and labor demand

This appendix explains how to perform the two counterfactual experiments to answer the following two questions. First, what is the contribution
of non-Hicks neutral technology, inclusive of the cross-sectional heterogeneity and over-time change of non-Hicks neutral technology, on the decline
in labor share in this industry from 2000 to 2007? Second, what is the relative importance of the cross-sectional heterogeneity and over-time change
of non-Hicks neutral technology in saving labor? To answer these two questions, we first calculate the elasticities of labor share with respect to
the efficiencies of capital, labor, and material, as implied by our structural model. Then we calculate the change of the efficiencies when moving
from the data to each of the counterfactual scenarios. Finally the contribution of technology changes on labor share can be calculated combining
information on the labor share elasticities and change of efficiencies.

21 The subsequent steps, namely inserting (𝜔jt , 𝜈 jt) into the production function to get an equation similar to Eq. (10) and estimating the parameters based on
the resulting equations, are quite straightforward following a similar procedure developed in Olley and Pakes (1996) and applied in Section 3 in this paper. These
subsequent steps are omitted here to save space.
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Labor share elasticity. The labor share implied by the model is

S∗Ljt =
𝜅 1+𝜂

𝜂
exp(𝛾𝜈0jt)L

𝛾
jt{

[exp(𝜔0jt)Kjt]𝛾 + [exp(𝜈0jt)Ljt]𝛾 + [exp(𝜇0jt)Mjt]𝛾
} .

Or in logarithm,

ln S∗Ljt = ln(𝜅 1 + 𝜂
𝜂

) + 𝛾𝜈0jt + 𝛾 ln Ljt − ln
{
[exp(𝜔0jt)Kjt]𝛾 + [exp(𝜈0jt)Ljt]𝛾 + [exp(𝜇0jt)Mjt]𝛾

}
.

The total differentiation of the log labor share is as follows

d ln S∗Ljt = 𝛾d𝜈0jt + 𝛾d ln Ljt −
1
A

dA, (E.1)

where

A = [exp(𝜔0jt)Kjt]𝛾 + [exp(𝜈0jt)Ljt]𝛾 + [exp(𝜇0jt)Mjt]𝛾

dA = {𝛾[exp(𝜔0jt)Kjt]𝛾d𝜔0jt + exp(𝛾𝜔0jt)K
𝛾
jtd ln Kjt + 𝛾[exp(𝜈0jt)Ljt]𝛾d𝜈0jt

+𝛾[exp(𝜇0jt)Mjt]𝛾d𝜇0jt + exp(𝛾𝜈0jt)L
𝛾
jtd ln Ljt + exp(𝛾𝜇0jt)M

𝛾
jtd ln Mjt

= B + exp(𝛾𝜈0jt)L
𝛾
jtd ln Ljt + exp(𝛾𝜇0jt)M

𝛾
jtd ln Mjt

Here B = exp(𝛾𝜔0jt)K
𝛾
jtd ln Kjt + 𝛾[exp(𝜔0jt)Kjt]𝛾d𝜔0jt + 𝛾[exp(𝜈0jt)Ljt]𝛾d𝜈0jt + 𝛾[exp(𝜇0jt)Mjt]𝛾d𝜇0jt . A change in factor-augmenting efficiencies

affects labor share through a direct effect of efficiencies, and an indirect effect by changing the demand for inputs. We focus on the short-term
reaction of labor and material demand, by fixing capital for simplicity.

Using the notation of A, the first order condition with respect to the optimal choice of labor and material can be rewritten as follows,

𝜅
1 + 𝜂
𝜂

Φ
−1
𝜂

jt A
𝜅
𝛾
−1+ 𝜅

𝜂𝛾 exp(𝛾𝜈0jt)L
𝛾−1
jt = Wjt ,

𝜅
1 + 𝜂
𝜂

Φ
−1
𝜂

jt A
𝜅
𝛾
−1+ 𝜅

𝜂𝛾 exp(𝛾𝜇0jt)M
𝛾−1
jt = PMjt .

After taking logarithm, total differentiation of the first order conditions implies the following equation system

d ln[𝜅 1 + 𝜂
𝜂

Φ
−1
𝜂

jt ] + (𝜅
𝛾
− 1 + 𝜅

𝜂𝛾
) 1
A

dA + 𝛾d𝜈0jt + (𝛾 − 1)d ln Ljt = d ln Wjt ,

d ln[𝜅 1 + 𝜂
𝜂

Φ
−1
𝜂

jt ] + (𝜅
𝛾
− 1 + 𝜅

𝜂𝛾
) 1
A

dA + 𝛾d𝜇0jt + (𝛾 − 1) ln Mjt = d ln PMjt .

Given that A is a function of d ln L and d ln M, we can solve out d ln L and d ln M from the above two-equation linear system. The results are as
follows

d ln Ljt =
A

{
d ln Wjt − 𝛾d𝜈0jt − d ln[𝜅 1+𝜂

𝜂
Φ

−1
𝜂

jt ]
}

− ( 𝜅
𝛾
− 1 + 𝜅

𝜂𝛾
)
{

B + Am
𝛾−1

[
d ln PMjt

Wjt
− 𝛾(d𝜇0jt − d𝜈0jt)

]}
( 𝜅
𝛾
− 1 + 𝜅

𝜂𝛾
)(Am + Al) + A(𝛾 − 1)

,

d ln Mjt = d ln Ljt +
1

𝛾 − 1
(d ln PMjt − d ln Wjt) −

𝛾
𝛾 − 1

(d𝜇0jt − d𝜈0jt).

To simplify the notification, we denoted Ak = [exp(𝜔0jt)Kjt]𝛾 ,Al = [exp(𝜈0jt)Ljt]𝛾 , and Am = [exp(𝜇0jt)Mjt]𝛾 . So A = Ak + Al + Am. The impact of
efficiencies of capital, labor, and material on labor and material demand can then be derived by calculating the corresponding partial derivatives,
as follows
𝜕 ln L
𝜕𝜔0

= 𝜕 ln M
𝜕𝜔0

= −𝛾Ak

Am + Al +
A(𝛾−1)

( 𝜅
𝛾
−1+ 𝜅

𝜂𝛾
)

,

𝜕 ln L
𝜕𝜈0

=
− A𝛾

( 𝜅
𝛾
−1+ 𝜅

𝜂𝛾
) −

𝛾
𝛾−1 Am − 𝛾Al

Am + Al +
A(𝛾−1)

( 𝜅𝛾 −1+ 𝜅
𝜂𝛾 )

𝜕 ln M
𝜕𝜈0

= 𝜕 ln L
𝜕𝜈0

+ 𝛾
𝛾 − 1

,

𝜕 ln L
𝜕𝜇0

=
−Am𝛾

𝛾−2
𝛾−1

Am + Al +
A(𝛾−1)

( 𝜅
𝛾
−1+ 𝜅

𝜂𝛾
)

,

𝜕 ln M
𝜕𝜇0

= 𝜕 ln L
𝜕𝜇0

− 𝛾
𝛾 − 1

.
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Then the elasticity of (log) labor share with respect to the efficiencies of capital, labor, and material can be computed following Eq. (E.1).

𝜕 ln S∗Ljt

𝜕𝜔0
= 𝛾

𝜕 ln Ljt

𝜕𝜔0
− 1

A

{
𝛾Ak + Al

𝜕 ln L
𝜕𝜔0

+ Am
𝜕 ln M
𝜕𝜔0

}
, (E.2)

𝜕 ln S∗Ljt
𝜕𝜈0

= 𝛾 + 𝛾
𝜕 ln L
𝜕𝜈0

− 1
A

{
𝛾Al + Al

𝜕 ln L
𝜕𝜈0

+ Am
𝜕 ln M
𝜕𝜈0

}
, (E.3)

𝜕 ln S∗Ljt
𝜕𝜇0

= 𝛾
𝜕 ln L
𝜕𝜇0

− 1
A

{
𝛾Am + Al

𝜕 ln L
𝜕𝜇0

+ Am
𝜕 ln M
𝜕𝜇0

}
. (E.4)

Counterfactual (1): contribution of non-Hicks neutral technology
The first counterfactual experiment evaluates the importance of non-Hikcs neutral technology to labor share. The idea is to ask what would be

the labor share if the impact of non-Hicks neutral technology is removed completely. To this purpose, I choose the first year (2000) as the base year
and assume that all firms share the same factor-augmenting efficiencies, (𝜔0, 𝜈0, 𝜇0). (𝜔0, 𝜈0, 𝜇0) is chosen as the median of (𝜔0jt , 𝜈0jt , 𝜇0jt) in year
2000 (t = 2000) estimated in the full model. So the production function in the counterfactual world is

Qjt = exp(𝜅𝜔jt)
{
[exp(𝜔0)Kjt]𝛾 + [exp(𝜈0)Ljt]𝛾 + [exp(𝜇0)Mjt]𝛾

} 𝜅
𝛾 ,

where �̃�jt is the counterfactual Hicks-neutral productivity. We choose �̃�jt in such a way that the implied TFP in this counterfactual world equals
that estimated in the data. Specifically for year t′ = 2007, �̃�jt′ is determined by

�̃�jt + (wk𝜔0 + wl𝜈0 + wm𝜇0) = (wk𝜔0jt′ + wl𝜈0jt′ + wm𝜇0jt′ ).

wk,wl, and wm are the corresponding weights, chosen as the output elasticity with respect to capital, labor, and material inputs respectively.
Then under this new technology in the counterfactual, we removed the cross-sectional heterogeneity and over-time evolution of non-Hicks neutral
technology. As a result, the difference of labor share in the conterfactual and that in the data represents the contribution of non-Hicks neutral
technology on labor share. We use first-order approximation to calculate this contribution, in the following steps.

• Step 1: Calculate the differences of efficiencies from this counterfactual to that in the data as follows (with a little abuse of notation):

D𝜔0 = 𝜔0jt′ − (�̃�jt + 𝜔0),

D𝜈0 = 𝜈0jt′ − (𝜈jt + 𝜈0),

D𝜇0 = 𝜇0jt′ − (𝜇jt + 𝜇0).

• Step 2: Calculate the contribution of non-Hicks neutral technology changes to labor share. In the empirical analysis, we use first-order approxi-
mation as follows,

△SnonHicks
L =

𝜕SLjt
𝜕𝜔0

D𝜔0 +
𝜕SLjt
𝜕𝜈0

D𝜈0 +
𝜕SLjt
𝜕𝜇0

D𝜇0.

Note that △SnonHicks
L constitutes the contribution of non-Hicks neutral technology differences across firms and over time on labor share.

Counterfactual (2): Contribution of non-neutral technology dispersion
To isolate the contribution of the cross-sectional heterogeneity from the over-time change of non-Hicks neutral technology, we perform the

second counterfactual in which we remove only the cross-firm heterogeneity of non-Hicks neutral technology. Then the difference of labor share
between this counterfactual and the data defines the contribution of the cross-sectional differences of non-Hicks neutral technology to labor share;
the difference of the labor share between this counterfactual and that in counterfactual (1) above defines the contribution of the over-time changes
in non-Hicks neutral technology to labor share.

The solution procedure is very similar to that in counterfactual (1), except that we do the above computation year by year. For each year, we
fix the factor-augmenting efficiency ratios at (𝜔0t , 𝜈0t , 𝜇0t), which are the medians of the corresponding efficiencies in year t. Thereafter, we do the
above solution procedure for observations in year t only. We repeat this for each year and compute the labor demand for each year when there is
no non-neutral technology dispersion across firms within each year, while keeping non-neutral technology change over time.

Table 9 illustrates the counterfactual results.

Appendix F. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jdeveco.2019.06.001
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